Skip to main content

Trajectory tracking of a class of under-actuated thrust-propelled vehicle with uncertainties and unknown disturbances

Abstract

This paper deals with the problem of designing a controller for a thrust-propelled vehicle which steers the vehicle to track a 3D spatial path, while effective compensation for both time-varying disturbances and uncertainties is achieved as well. Taking advantage of extraction algorithm, we separate the design for the translational and rotational dynamics. A back-stepping-based controller and a sliding mode controller are, respectively, designed for the translational and rotational dynamics in succession. The stability of the control framework is established through Lyapunov analysis. A numerical simulation is also included in the paper to render the effectiveness of the proposed control scheme.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Abdessameud, A., Tayebi, A.: Global trajectory tracking control of vtol-uavs without linear velocity measurements. Automatica 46(6), 1053–1059 (2010). doi:10.1016/j.automatica.2010.03.010

    Article  MathSciNet  MATH  Google Scholar 

  2. Abdessameud, A., Tayebi, A.: Motion Coordination for VTOL Unmanned Aerial Vehicles. Advances in Industrial Control. Springer London, London (2013). doi:10.1007/978-1-4471-5094-7

    Book  MATH  Google Scholar 

  3. Aguiar, A.P., Hespanha, J.P.: Trajectory-tracking and path-following of underactuated autonomous vehicles with parametric modeling uncertainty. IEEE Trans. Autom. Control 52(8), 1362–1379 (2007). doi:10.1109/TAC.2007.902731

    Article  MathSciNet  MATH  Google Scholar 

  4. Bertrand, S., Guénard, N., Hamel, T., Piet-Lahanier, H., Eck, L.: A hierarchical controller for miniature VTOL UAVs: design and stability analysis using singular perturbation theory. Control Eng. Pract. 19(10), 1099–1108 (2011). doi:10.1016/j.conengprac.2011.05.008

    Article  Google Scholar 

  5. Børhaug, E., Pavlov, A., Panteley, E., Pettersen, K.Y.: Straight line path following for formations of underactuated marine surface vessels. IEEE Trans. Control Syst. Technol. 19(3), 493–506 (2011). doi:10.1109/TCST.2010.2050889

  6. Boskovic, J.D., Li, S.M., Mehra, R.K.: Robust tracking control design for spacecraft under control input saturation. J. Guid. Control Dyn. 27(4), 627–633 (2004). doi:10.2514/1.1059

    Article  Google Scholar 

  7. Cabecinhas, D., Cunha, R., Silvestre, C.: A nonlinear quadrotor trajectory tracking controller with disturbance rejection. In: 2014 American Control Conference, vol. 26, pp. 560–565. IEEE (2014). doi:10.1109/ACC.2014.6858615

  8. Cai, Z., de Queiroz, M.S., Dawson, D.M.: Robust adaptive asymptotic tracking of nonlinear systems with additive disturbance. IEEE Trans. Autom. Control 51(3), 524–529 (2006). doi:10.1109/TAC.2005.864204

    Article  MathSciNet  MATH  Google Scholar 

  9. Cai, Z., de Queiroz, M.S., Dawson, D.M.: A sufficiently smooth projection operator. IEEE Trans. Autom. Control 51(1), 135–139 (2006). doi:10.1109/TAC.2005.861704

    Article  MathSciNet  MATH  Google Scholar 

  10. Casau, P., Sanfelice, R.G., Cunha, R., Cabecinhas, D., Silvestre, C.: Robust global trajectory tracking for a class of underactuated vehicles. Automatica 58, 90–98 (2015). doi:10.1016/j.automatica.2015.05.011

    Article  MathSciNet  MATH  Google Scholar 

  11. Chen, M., Shi, P., Lim, C.C.: Robust constrained control for mimo nonlinear systems based on disturbance observer. IEEE Trans. Autom. Control 60(12), 3281–3286 (2015). doi:10.1109/TAC.2015.2450891

    Article  MathSciNet  MATH  Google Scholar 

  12. Diebel, J.: Representing attitude: Euler angles, unit quaternions, and rotation vectors. Matrix 58, 1–35 (2006). doi:10.1093/jxb/erm298

    Google Scholar 

  13. Hua, M., Hamel, T., Morin, P.: A control approach for thrust-propelled underactuated vehicles and its application to vtol drones. IEEE Trans. (2009). doi:10.1109/TAC.2009.2024569

    MATH  Google Scholar 

  14. Hua, M.D., Morin, P., Samson, C.: Balanced-force-control of underactuated thrust-propelled vehicles. In: 2007 46th IEEE Conference Decision Control pp. 6435–6441 (2007). doi:10.1109/CDC.2007.4434268

  15. Kabiri, M., Atrianfar, H., Menhaj, M.B.: Formation control of vtol uav vehicles under switching-directed interaction topologies with disturbance rejection. Int. J. Control 1–12 (2016). doi:10.1080/00207179.2016.1266518.

  16. Lu, K., Xia, Y.: Adaptive attitude tracking control for rigid spacecraft with finite-time convergence. Automatica 49(12), 3591–3599 (2013). doi:10.1016/j.automatica.2013.09.001

    Article  MathSciNet  MATH  Google Scholar 

  17. Madani, T., Benallegue, A.: Backstepping control with exact 2-sliding mode estimation for a quadrotor unmanned aerial vehicle. In: IEEE International Conference Intelligent Robots and Systems, pp. 141–146 (2007). doi:10.1109/IROS.2007.4399009

  18. Olfati-Saber, R.: Nonlinear control of underactuated mechanical systems with application to robotics and aerospace vehicles (2001)

  19. Panagou, D., Kyriakopoulos, K.J.: Viability control for a class of underactuated systems. Automatica 49(1), 17–29 (2013). doi:10.1016/j.automatica.2012.09.002

    Article  MathSciNet  MATH  Google Scholar 

  20. Pflimlin, J.M., Soueres, P., Hamel, T.: Position control of a ducted fan VTOL UAV in crosswind. Int. J. Control 80(5), 666–683 (2007). doi:10.1080/00207170601045034

    Article  MathSciNet  MATH  Google Scholar 

  21. Reyhanoglu, M., van der Schaft, A., Mcclamroch, N.H., Kolmanovsky, I.: Dynamics and control of a class of underactuated mechanical systems. IEEE Trans. Autom. Contr. 44(9), 1663–1671 (1999). doi:10.1109/9.788533

    Article  MathSciNet  MATH  Google Scholar 

  22. Roberts, A., Tayebi, A.: Adaptive position tracking of vtol uavs. IEEE Trans. Robot. 27(1), 129–142 (2011). doi:10.1109/TRO.2010.2092870

    Article  Google Scholar 

  23. Shuster, M.D.: A survey of attitude representations (1993). doi:10.2514/6.2012-4422

  24. Slotine, J.J.E., Li, W., et al.: Applied Nonlinear Control, vol. 199. prentice-Hall Englewood Cliffs, NJ (1991)

    MATH  Google Scholar 

  25. Song, Y., Cai, W.: Quaternion observer-based model-independent attitude tracking control of spacecraft. J. Guid. Control. Dyn. 32(5), 1476–1482 (2009). doi:10.2514/1.43029

    Article  Google Scholar 

  26. Wang, Z., Wu, Z.: Nonlinear attitude control scheme with disturbance observer for flexible spacecrafts. Nonlinear Dyn. 81(1–2), 257–264 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wen, C., Zhou, J., Liu, Z., Su, H.: Robust adaptive control of uncertain nonlinear systems in the presence of input saturation and external disturbance. IEEE Trans. Autom. Control 56(7), 1672–1678 (2011). doi:10.1109/TAC.2011.2122730

    Article  MathSciNet  MATH  Google Scholar 

  28. Xian, B., Dawson, D.M., DeQueiroz, M.S., Chen, J.: A continuous asymptotic tracking control strategy for uncertain nonlinear systems. IEEE Trans. Autom. Control 49(7), 1206 (2004). doi:10.1109/TAC.2004.831148

    Article  MathSciNet  MATH  Google Scholar 

  29. Zhu, Z., Xia, Y., Fu, M.: Adaptive sliding mode control for attitude stabilization with actuator saturation. IEEE Trans. Ind. Electron. 58(10), 4898–4907 (2011). doi:10.1109/TIE.2011.2107719

    Article  Google Scholar 

  30. Zou, A.M., Kumar, K.D., de Ruiter, A.H.J.: Robust attitude tracking control of spacecraft under control input magnitude and rate saturations. Int. J. Robust Nonlinear Control 26(4), 799–815 (2016). doi:10.1002/rnc.3338

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hajar Atrianfar.

Appendices

Appendix

A Extraction algorithm

Here we introduce the extraction algorithm for obtaining \(Q_d\) and T form the intermediate control \(F=(F_1, F_2, F_3)^T\) given in (4).

$$\begin{aligned}&T=\frac{1}{\hat{\theta }} ||F-g\hat{z}||,\end{aligned}$$
(63)
$$\begin{aligned}&\eta _{d}=\sqrt{\frac{1}{2}+\frac{g-F_{3}}{2||F-g\hat{z}||}},\,\, q_{d}=\frac{1}{2 ||F-g\hat{z}|| \eta _{d}}\begin{pmatrix} F_{2} \\ -F_{1} \\ 0 \end{pmatrix}.\nonumber \\ \end{aligned}$$
(64)

As it is clear from (64), this extraction is well defined if

$$\begin{aligned} F\ne g\hat{z}. \end{aligned}$$
(65)

The desired angular velocity \(\omega _{d}\) and its derivative \(\dot{\omega }_{d}\) can also be obtained by the following expressions

$$\begin{aligned} \omega _d= & {} \varXi (F)\dot{F}, \end{aligned}$$
(66)
$$\begin{aligned} \dot{\omega }_d= & {} \dot{\varXi }(F, \dot{F})\dot{F}+\varXi (F)\ddot{F}, \end{aligned}$$
(67)

with

$$\begin{aligned} \varXi (F)=\frac{1}{\ell _1^2 \ell _2}\begin{pmatrix} -F_{1}F_{2} &{} -F^{2^2}+\ell _1\ell _2 &{} -F_{2}\ell _2 \\ F^{1^2}-\ell _1\ell _2 &{} F_{1}F_{2} &{} -F_{1}\ell _2\\ F_{2}\ell _1 &{} -F_{1}\ell _1 &{} 0 \end{pmatrix}, \end{aligned}$$
(68)

where \(\ell _1=||F-g\hat{z}||,\quad \ell _2=\ell _1+(g-\mu _{3})\) and \(\dot{\varXi }(F, \dot{F})\) is the time derivative of \(\varXi (F)\) and the subscript i is omitted for notational simplicity. The proof can be found in [2].

B Analysis of boundedness of \(\omega _d\) and \(\dot{\omega }_d\)

From (66) to (67), boundedness of \(\omega _d\) and \(\dot{\omega }_d\) can be guaranteed if F, \(\dot{F}\), \(\ddot{F}\) are bounded. Regarding the structure of F defined in (9)–(10), it is obvious that F is bounded and \(\dot{F}\) and \(\ddot{F}\) are bounded if, respectively, w and its derivative are bounded. From (29), we have

$$\begin{aligned} w=-k_3s_2-\varPhi _2+\ddot{v}_d+k_1^2\tilde{v}, \end{aligned}$$

and boundedness of w can be easily concluded by Assumption 2 and boundedness of \(s_2\) and \(\tilde{v}\) which are provided by the discussion in Sect. 4. The derivative of w is obtained by

$$\begin{aligned} \dot{w}=-k_3\dot{s}_2-\dot{\varPhi }_2+v^{(3)}_d+k_1^2\dot{\tilde{v}}. \end{aligned}$$

Viewing (3) and Assumption 2, the last two terms in the above equation are bounded based on boundedness of \(s_1\), F, \(\tilde{F}\), \(\tilde{{\bar{\theta }}}\) which is concluded from the discussion in Sect. 4. Based on (9)–(10) and (15), we have

$$\begin{aligned} \dot{s}_2=\dot{f}(u)-\dot{f_d}=w+k_2 \tanh (s_1)+\varPhi _1-\dot{v}_d+k_1\tilde{v}, \end{aligned}$$

which is also bounded. It now just remains to prove that \(\dot{\varPhi }_2\) is bounded. From (30), we can obtain

$$\begin{aligned} \dot{\varPhi }_2= & {} u_{m2}\frac{\dot{s}_2^T\left( ||s_2||^2+(\kappa _2\sigma _2)^2\right) -s_2^T\left( s_2^T \dot{s}_2+\kappa _2\dot{\kappa }_2\sigma _2 \right) }{\left( ||s_2||^2+(\kappa _2\sigma _2)^2\right) ^{3/2}},\nonumber \\ \end{aligned}$$
(69)

which is also bounded since \(\dot{s}_2\), \(s_2\), \(\kappa _2\) are bounded, \(\dot{\kappa }_2\) is bounded from (31), and the fact that \(\kappa _2\) is kept away from zero by suitable selection of the gain \(\lambda _2\) and the initial value \(\kappa _2(0)\) as explained in Sect. 4.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kabiri, M., Atrianfar, H. & Menhaj, M.B. Trajectory tracking of a class of under-actuated thrust-propelled vehicle with uncertainties and unknown disturbances. Nonlinear Dyn 90, 1695–1706 (2017). https://doi.org/10.1007/s11071-017-3759-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3759-8

Keywords

  • Disturbance rejection
  • Robustness
  • Thrust-propelled vehicle
  • Trajectory tracking