Skip to main content

Advertisement

Log in

Perturbation-induced chaos in nonlinear Schrödinger equation with single source and its characterization

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, we study the chaotic behavior of the nonlinear Schödinger equation with a single source under external perturbations. Based on Melnikov’s theorem, we prove the existence of chaos regardless of the complexity of the perturbation signals. Numerical simulations and electronic circuit experiments are also devised to verify this phenomenon. By investigating the Lyapunov spectrum and considering chaos suppression, we analyze the evolution properties of chaos excited by perturbations with different power and frequency richness. Results show that the noise-induced chaos possesses a larger positive Lyapunov exponent (LE), implying a stronger diversity, when the power of the perturbation signal increases. The corresponding chaos is also more difficult to be controlled and a larger control strength is needed to suppress the chaos. Moreover, it is noticed that, with the same signal power, the richer in frequency, the smaller the maximum LE. However, it is more difficult to control the induced chaos when the frequency of the perturbation signal is rich, yet the control strength remains more or less the same after certain level of frequency richness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kumar, H., Chand, F.: Optical solitary wave solutions for the higher order nonlinear Schrödinger equation with self-steepening and self-frequency. Opt. Laser Technol. 54, 265–273 (2013)

    Article  Google Scholar 

  2. Yang, J., Kaup, D.J.: Stability and evolution of solitary waves in perturbed generalized nonlinear Schrödinger equations. Siam J. Appl. Math. 60, 967–989 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  3. Mani Rajan, M.S.: Dynamics of optical soliton in a tapered erbium-doped fiber under periodic distributed amplification system. Nonlinear Dyn. 85, 599–606 (2016)

    Article  Google Scholar 

  4. Yu, F.: Nonautonomous soliton, controllable interaction and numerical simulation for generalized coupled cubic–quintic nonlinear Schrödinger equations. Nonlinear Dyn. 85, 1203–1216 (2016)

    Article  MATH  Google Scholar 

  5. Mirzazadeh, M., Eslami, M., Zerrad, E., Mahmood, M.F., Biswas, A., Belic, M.: Optical solitons in nonlinear directional couplers by sine–cosine function method and Bernoulli’s equation approach. Nonlinear Dyn. 81, 1933–1949 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chabchoub, A., Kibler, B., Finot, C., Millot, G., Onorato, M., Dudley, J.M., Babanin, A.V.: The nonlinear Schrödinger equation and the propagation of weakly nonlinear waves in optical fibers and on the water surface. Ann. Phys. 361, 490–500 (2015)

    Article  MATH  Google Scholar 

  7. Ekici, M., Mirzazadeh, M., Eslami, M.: Solitons and other solutions to Boussinesq equation with power law nonlinearity and dual dispersion. Nonlinear Dyn. 84, 669–676 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  8. Zakharov, V.E.: Collapse of Langmuir waves. Sov. Phys. JETP 35(5), 908–914 (1972)

    Google Scholar 

  9. Zvezdin, A.K., Popkov, A.F.: Contribution to the nonlinear theory of magnetostatic spin waves. Sov. Phys. JETP 57(2), 350–355 (1983)

    Google Scholar 

  10. Solli, D.R., Ropers, C., Koonath, P., Jalali, B.: Optical rouge waves. Nature 450, 06402 (2007)

    Article  Google Scholar 

  11. Kharif, C., Pelinovsky, E.: Physical mechanisms of the rogue wave phenomenon. Eur. J. Mech. B-Fluids 22, 603–634 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  12. Slunyaev, A., Sergeeva, A., Pelinovsky, E.: Wave amplification in the framework of forced nonlinear Schrödinger equation: the rogue wave context. Phys. D 303, 18–27 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  13. Vishnu Priya, N., Senthilvelan, M.: On the characterization of breather and rogue wave solutions and modulation instability of a coupled generalized nonlinear Schrödinger equations. Wave Motion 54, 125–133 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  14. Borich, M.A., Smagin, V.V., Tankeev, A.P.: Stationary states of extended nonlinear Schrödinger equation with a source. Phys. Metals Metallogr. 103, 118–130 (2007)

    Article  Google Scholar 

  15. Moghaddam, M.Y., Asgari, A., Yazdani, H.: Exact travelling wave solutions for the generalized nonlinear Schrödinger equation with a source by Extended tanh-coth, Sine–cosine and Exp-Function methods. Appl. Math. Comput. 210, 422–435 (2009)

    MATH  MathSciNet  Google Scholar 

  16. Raju, T.S., Kumar, C.N., Panigrahi, P.K.: On exact solitary wave solutions of the nonlinear Schrödinger equation with a source. J. Phys. A: Math. Gen. 38, 271–276 (2005)

    Article  MATH  Google Scholar 

  17. Dijk, W.V.: Numerical solutions of the Schrödinger equation with source terms or time-dependent potentials. Phys. Rev. E 90, 063309 (2014)

    Article  Google Scholar 

  18. Raju, T.S., Kumar, C.N., Panigrahi, P.K.: Compacton-like solutions for modified KdV and nonlinear Schrödinger equation with external sources. Pramana-J. Phys. 83(2), 273–277 (2014)

    Article  Google Scholar 

  19. Liu, W.J., Pang, L.H., Wong, P., Lei, M., Wei, Z.Y.: Dynamic solitons for the perturbed derivative nonlinear Schrödinger equation in nonlinear optics. Laser Phys. 25, 065401 (2015)

    Article  Google Scholar 

  20. Zedan, H.A., Aladrous, E., Shapll, S.: Exact solutions for a perturbed nonlinear Schrödinger equation by using Bäcklund transformations. Nonlinear Dyn. 74, 1145–1151 (2013)

    Article  MATH  Google Scholar 

  21. Avila, A.I., Meister, A., Steigemann, M.: On numerical methods for nonlinear singularly perturbed Schrödinger problems. Appl. Numer. Math. 86, 22–42 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  22. Moussa, R., Goumri-Said, S., Aourag, H.: Unperturbed and perturbed nonlinear Schrödinger system for optical fiber solitons. Phys. Lett. A 266, 173–182 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  23. Ozgul, S., Turan, M.: Exact traveling wave solutions of perturbed nonlinear Schrödinger equation (NLSE) with Kerr law nonlinearity. Optik 123, 2250–2253 (2012)

    Article  Google Scholar 

  24. Yin, J.L., Zhao, L.W.: Dynamical behaviors of the shock compacton in the nonlinearly Schrödinger equation with a source term. Phys. Lett. A 378, 3516–3522 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  25. Shinozuka, M.: Simulation of multivariate and multidimensional random processes. J. Acoust. Soc. Am. 49(1, Part 2), 357–368 (1971)

    Article  Google Scholar 

  26. Stanton, S.C., Mann, B.P., Owens, B.A.M.: Melnikov theoretic methods for characterizing the dynamics of the bistable piezoelectric inertial generator in complex spectral environments. Phys. D 241, 711–720 (2012)

  27. Li, S.H., Yang, S.P., Guo, W.W.: Investigation on chaotic motion in hysteretic non-linear suspension system with multi-frequency excitations. Mech. Res. Commun. 31, 229–236 (2004)

    Article  MATH  Google Scholar 

  28. Tel, T., Lai, Y.C., Gruiz, M.: Noise-induced chaos: a consequence of long deterministic transients. Int. J. Bifurcation Chaos 18(2), 509–520 (2008)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by the Nature Science Foundation of Jiangsu Province (No. SBK2015021674) and a grant from City University of Hong Kong (Project No. 7004422).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wallace K. S. Tang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, J., Tang, W.K.S. Perturbation-induced chaos in nonlinear Schrödinger equation with single source and its characterization. Nonlinear Dyn 90, 1481–1490 (2017). https://doi.org/10.1007/s11071-017-3740-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3740-6

Keywords

Navigation