Skip to main content
Log in

Synthesis and validation of finite time servo control with PSO identification for automotive electronic throttle

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In order to enhance the rapidity and accuracy of throttle opening trajectory tracking for vehicle electronic throttle control (ETC) systems, a finite time servo control strategy is investigated by incorporating the particle swarm optimization (PSO) identification technique with the finite time stability theory. The PSO technique is adopted to identify the uncertain physical parameters of a real vehicle ETC system. In the PSO-based identification algorithm, the integrated square error between the actual and model throttle opening angles is regarded as the fitness function, and the mutation operation is added to prevent the particles from falling into local optimum. The designed servo controller is comprised of a feed-forward controller for trajectory tracking accuracy, a nonlinearity compensator for friction and return spring, and a feedback controller for finite time stability by utilizing additional power integrator and backstepping technique. The effectiveness of the proposed control strategy is verified by both the comparison results with the existing strategy in MATLAB/Simulink environment and the experiment results carried out on the electronic throttle hardware-in-loop test platform in several actual operating cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Shi, Z., Wang, Y., Ji, Z.: A multi-innovation recursive least squares algorithm with a forgetting factor for Hammerstein CAR systems with backlash. Circuits Syst. Signal Process 35(12), 4271–4289 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  2. Shi, Z., Ji, Z.: Least squares based and two-stage least squares based iterative estimation algorithms for H-FIR-MA systems. Math. Probl. Eng. Vol. 2015, Article ID 516374, 8p, (2015) doi:10.1155/2015/516374

  3. Loh, R.N.K., Thanom, W., Pyko, J.S., Lee, A.: Electronic throttle control system: modeling, identification and model-based control designs. Engineering 05(7), 587–600 (2013)

    Article  Google Scholar 

  4. Yuan, X., Li, S., Wang, Y., Sun, W., Wu, L.: Parameter identification of electronic throttle using a hybrid optimization algorithm. Nonlinear Dyn. 63(4), 549–557 (2011)

    Article  Google Scholar 

  5. Zhang, S., Yang, J., Zhu, G.: LPV modeling and mixed constrained \(H_2/H_\infty \) control of an electronic throttle. IEEE/ASME Trans. Mech. 20(5), 2120–2132 (2015)

    Article  Google Scholar 

  6. Mercorelli, P.: Robust feedback linearization using an adaptive PD regulator for a sensorless control of a throttle valve. Mechatronics 19(8), 1334–1345 (2009)

    Article  Google Scholar 

  7. Jiao, X., Zhang, J., Shen, T.: An adaptive servo control strategy for automotive electronic throttle and experimental validation. IEEE Trans. Ind. Electron. 61(11), 6275–6284 (2014)

    Article  Google Scholar 

  8. Yuan, X., Wang, Y.: Neural networks based self-learning PID control of electronic throttle. Nonlinear Dyn. 55(4), 385–393 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  9. Wang, H., Yuan, X., Wang, Y., Yang, Y.: Harmony search algorithm-based fuzzy-PID controller for electronic throttle valve. Neural Comput. Appl. 22(2), 329–336 (2013)

    Article  Google Scholar 

  10. Wang, S., Yan, B.: Fruit fly optimization algorithm based fractional order fuzzy-PID controller for electronic throttle. Nonlinear Dyn. 73(1), 611–619 (2013)

    MathSciNet  Google Scholar 

  11. Wang, C.H., Huang, D.Y.: A new intelligent fuzzy controller for nonlinear hysteretic electronic throttle in modern intelligent automobiles. IEEE Trans. Ind. Electron. 60(6), 2332–2345 (2013)

    Article  Google Scholar 

  12. Yuan, X., Yang, Y., Wang, H., Wang, Y.: Genetic algorithm-based adaptive fuzzy sliding mode controller for electronic throttle valve. Neural Comput. Appl. 23(S1), 209–217 (2013)

    Article  Google Scholar 

  13. Li, Y., Yang, B., Zheng, T., Li, Y., Cui, M., Peeta, S.: Extended state observer based double loop integral sliding mode control of electronic throttle valve. IEEE Trans. Intell. Trans. Syst. 16(5), 2501–2510 (2015)

    Article  Google Scholar 

  14. Wang, H., Liu, L., He, P., Yu, M., Do, M.T., Kong, H., Man, Z.: Robust adaptive position control of automotive electronic throttle valve using PID-type sliding mode technique. Nonlinear Dyn. 85(2), 1331–1344 (2016)

    Article  Google Scholar 

  15. Bhat, S.P., Bernstein, D.S.: Finite-time stability of continuous autonomous systems. SIAM J. Control Optim. 38(3), 751–766 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  16. Bhat, S.P., Bernstein, D.S.: Geometric homogeneity with applications to finite-time stability. Math. Control Signals Syst. 17(2), 101–127 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  17. Huang, X., Lin, W., Yang, B.: Global finite-time stabilization of a class of uncertain nonlinear systems. Automatica 41(5), 881–888 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  18. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of 1995 IEEE International Conference on Neural Networks, Vol.4, pp.1942–1948. (1995)

  19. Kameyama, K.: Particle swarm optimization : a survey. IEICE Trans. Inf. Syst. 92(7), 1354–1361 (2009)

    Article  Google Scholar 

  20. Kwok, N.M., Ha, Q.P., Nguyen, T.H.: A novel hysteretic model for magnetorheological fluid dampers and parameter identification using particle swarm optimization. Sens. Actuators A Phys. 132(2), 441–451 (2006)

    Article  Google Scholar 

  21. Calvini, M., Carpita, M., Formentini, A., Marchesoni, M.: PSO-based self-commissioning of electrical motor drives. IEEE Trans. Ind. Electron. 62(2), 768–776 (2015)

    Article  Google Scholar 

  22. Ratnaweera, A., Halgamuge, S.K., Watson, H.C.: Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients. IEEE Trans. Evol. Comput. 8(3), 240–255 (2004)

    Article  Google Scholar 

  23. MorKos, S., Kamal, A.H.: Adaptive mutation PSO for optimum design of PID controller in Robotic arm. Mediterr. J. Meas. Control 8(4), 477–484 (2012)

    Google Scholar 

  24. Deur, J., Pavkovic, D., Peric, N., Jansz, M., Hrovat, D.: An electronic throttle control strategy including compensation of friction and limp-home effects. IEEE Trans. Ind. Appl. 40(3), 821–834 (2004)

    Article  Google Scholar 

  25. Shieh, N.C.: Robust output tracking control of a linear brushless DC motor with time-varying disturbances. IEE Proc. Electric Power Appl. 149(1), 39–45 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 61573304) and the Natural Science Foundation of Hebei Province (Grant No. F2017203210).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohong Jiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, G., Jiao, X. Synthesis and validation of finite time servo control with PSO identification for automotive electronic throttle. Nonlinear Dyn 90, 1165–1177 (2017). https://doi.org/10.1007/s11071-017-3718-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3718-4

Keywords

Navigation