Skip to main content

Advertisement

Log in

Indirect adaptive robust dynamic surface control in separate meter-in and separate meter-out control system

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

With the demand for energy efficiency in electrohydraulic servo systems (EHSS), the separate meter-in and separate meter-out (SMISMO) control system draws massive attention. In this paper, the SMISMO control system is decoupled completely into two subsystems by the proposed indirect adaptive robust dynamic surface control (IARDSC) method. Indirect adaptive robust control (IARC) is proposed to address the internal parameter uncertainties and external disturbances. Dynamic surface control (DSC) is utilized in the design procedure of IARC to deal with the inherent ‘explosion of terms’ problem. The proposed IARDSC simplifies the design procedure and decreases the computational cost of the controller. Besides, a faster parameter estimation scheme is proposed to adapt to the parameter change for a better estimation performance. Finally, experimental results show that the proposed IARDSC can achieve a good parameter estimation and trajectory tracking performance. Meanwhile, two energy saving techniques are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Yao, B., Bu, F., Reedy, J., et al.: Adaptive robust motion control of single-rod hydraulic actuators: theory and experiments. IEEE/ASME Trans. Mechatron. 5(1), 79–91 (2000)

    Article  Google Scholar 

  2. Chen, G., Wang, J., Wang, S., Zhao, J., Shen, W., Li, J.: Application of a new adaptive robust controller design method to electro-hydraulic servo system. Acta Autom. Sin. 42(3), 375–384 (2016)

    MATH  Google Scholar 

  3. Wang, H., Liu, L., He, P., et al.: Robust adaptive position control of automotive electronic throttle valve using PID-type sliding mode technique. Nonlinear Dyn. 85(2), 1331–1344 (2016)

    Article  Google Scholar 

  4. Breeden, R.H.: Development of a high pressure load sensing mobile valve. SAE Technical Paper (1981)

  5. Jansson, A., Palmberg, J.O.: Separate controls of meter-in and meter-out orifices in mobile hyraulic systems. SAE Technical Paper (1990)

  6. Liu, S., Yao, B.: Coordinate control of energy saving programmable valves. IEEE Trans. Control Syst. Technol. 16(1), 34–45 (2008)

    Article  Google Scholar 

  7. Liu, S., Yao, B.: Automated onboard modeling of cartridge valve flow mapping. IEEE/ASME Trans. Mechatron. 11(4), 381–388 (2006)

    Article  Google Scholar 

  8. Liu, Y., Xu, B., Yang, H., et al.: Simulation of separate meter in and separate meter out valve arrangement used for synchronized control of two cylinders. In: IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 2009 (AIM 2009), pp. 1665–1670 IEEE (2009)

  9. Aardema, J.A.: Hydraulic circuit having dual electrohydraulic control valves. U.S. Patent 5,568,759, 29 Oct 1996

  10. Chen, G.R., Wang, J.Z., Wang, S.K., Ma, L.L.: Separate meter in and separate meter out energy saving control system using dual servo valves under complex load conditions. Trans. Beijing Inst. Technol. 36(10), 1053–1058 (2016)

    Google Scholar 

  11. Aardema, J.A., Koehler, D.W.: System and method for controlling an independent metering valve. U.S. Patent 5,960,695, 5 Oct 1999

  12. Book, R., Goering, C.E.: Programmable electrohydraulic valve. SAE Technical Paper (1999)

  13. Krstic, M., Kanellakopoulos, I., Kokotovic, P.V.: Nonlinear and Adaptive Control Design. Wiley, New York (1995)

    MATH  Google Scholar 

  14. Roy, S., Kar, I.N.: Adaptive robust tracking control of a class of nonlinear systems with input delay. Nonlinear Dyn. 85(2), 1127–1139 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  15. Wang, Y., Wu, H.: Adaptive robust backstepping control for a class of uncertain dynamical systems using neural networks. Nonlinear Dyn. 81(4), 1597–1610 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  16. Yao, B., Tomizuka, M.: Adaptive robust control of SISO nonlinear systems in a semi-strict feedback form. Automatica 33(5), 893–900 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  17. Yao, B., Palmer, A.: Indirect adaptive robust control of SISO nonlinear systems in semi-strict feedback forms. In: IFAC World Congress, T-Tu-A03, vol. 2, pp. 1–6 (2002)

  18. Swaroop, D., Hedrick, J.K., Yip, P.P., et al.: Dynamic surface control for a class of nonlinear systems. IEEE Trans. Autom. Control 45(10), 1893–1899 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  19. Li Z, Chen, J., Gan, M., et al.: Adaptive robust dynamic surface control of dc torque motors with true parameter estimates. In: American Control Conference (ACC), 2010, pp. 3524–3529 IEEE (2010)

  20. Wang, F., Liu, Z., Zhang, Y., et al.: Adaptive fuzzy dynamic surface control for a class of nonlinear systems with fuzzy dead zone and dynamic uncertainties. Nonlinear Dyn. 79(3), 1693–1709 (2015)

    Article  MATH  Google Scholar 

  21. Wang, H., Wang, D., Peng, Z.: Adaptive dynamic surface control for cooperative path following of marine surface vehicles with input saturation. Nonlinear Dyn. 77(1–2), 107–117 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  22. Song, H., Zhang, T., Zhang, G., et al.: Robust dynamic surface control of nonlinear systems with prescribed performance. Nonlinear Dyn. 76(1), 599–608 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  23. Totten, G.E.: Handbook of Hydraulic Fluid Technology. CRC Press, Boca Raton (2011)

    Book  Google Scholar 

  24. Hao, R., Wang, J., Zhao, J., et al.: Observer-based robust control of 6-dof parallel electrical manipulator with fast friction estimation. IEEE Trans. Autom. Sci. Eng. 13(3), 1399–1408 (2016)

    Article  Google Scholar 

  25. Berkovitz, L.D.: Convexity and Optimization in Rn. Wiley, New York (2003)

    Google Scholar 

  26. Xu, L., Yao, B.: Adaptive robust precision motion control of linear motors with negligible electrical dynamics: theory and experiments. IEEE/ASME Trans. Mechatron. 6(4), 444–452 (2001)

    Article  Google Scholar 

  27. Chen, G., Wang, J., Ma, L., Hao, R.: Observer-based and Energy Saving Control of Single-rod Electro-hydraulic Servo System Diven by Servo Motor. In: American Control Conference, pp: 2224–2229 (2015 )

  28. Liu, S., Yao, B.: Energy-saving control of single-rod hydraulic cylinders with programmable valves and improved working mode selection. SAE Technical Paper (2002)

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China under Grant No. 51675041.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangrong Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, G., Wang, J., Wang, S. et al. Indirect adaptive robust dynamic surface control in separate meter-in and separate meter-out control system. Nonlinear Dyn 90, 951–970 (2017). https://doi.org/10.1007/s11071-017-3704-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3704-x

Keywords

Navigation