Skip to main content
Log in

Orientation-error observer-based tracking control of nonholonomic mobile robots

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, a novel trajectory tracking controller is proposed for mobile robots with unknown orientation angle by employing the orientation-error observer (OEO). In order to overcome the local stability resulted from linearization design methods, an asymptotically stable controller is designed using Lyapunov’s direct method. This method breaks down nonlinear systems into low-dimensional systems and simplifies the controller design using virtual auxiliary error function and partial Lyapunov functions. A state-feedback controller for the nonlinear error dynamics of the mobile robot is combined with an observer that estimates the orientation-error based on available trajectory information and measurement of the position coordinates. The stability of the system is easily proved via the Lyapunov theory. Abundant simulation and experiment results validate the effectiveness and superiority of the proposed control method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Cui, M., Liu, W., Liu, H., Jiang, H.: Extended state observer-based adaptive sliding mode control of differential-driving mobile robot with uncertainties. Nonlinear Dyn. 83(1–2), 667–683 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bazzi, S., Shammas, E., Asmar, D.: A novel method for modeling skidding for systems with non-holonomic constraints. Nonlinear Dyn. 76(2), 1517–1528 (2014)

    Article  Google Scholar 

  3. Brockett, R.W.: Asymptotic stability and feedback stabilization. In: Boston, (ed.) Theory, Differential Geometric Control, pp. 181–191. Birkhauser, MA, USA (1983)

    Google Scholar 

  4. Samson, C.: Velocity and Torque Feedback Control of a Nonholonomic Cart (Lecture Notes in Control and Information Science), In: de Wit, C.C. (ed). Springer, New York, NY. pp. 125–151 (1991)

  5. Samson, C.: Control of chained systems application to path following and time-varying point-stabilization of mobile robots. IEEE Trans. Autom. Control 40(1), 64–77 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  6. Pomet, J.B.: Explicit design of time-varying stabilizing control laws for a class of controllable systems without drift. Syst. Control Lett. 18(2), 147–158 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  7. Walsh, G.C., Bushnell, L.G.: Stabilization of multiple input chained form control systems. Syst. Control Lett. 25(3), 227–234 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  8. Jiang, Z.P.: Iterative design of time-varying stabilizers for multi-input systems in chained form. Syst. Control Lett. 28(5), 255–262 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  9. Dixon, W.E., Jiang, Z.P., Dawson, D.M.: Global exponential setpoint control of wheeled mobile robots: A Lyapunov approach. Automatica 36(11), 1741–1746 (2000)

    Article  MATH  Google Scholar 

  10. Tian, Y.P., Li, S.: Exponential stabilization of nonholonomic dynamic systems by smooth time-varying control. Automatica 38(7), 1139–1146 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  11. Loría, A., Panteley, E., Melhem, K.: UGAS of skew-symmetric timevarying systems: Application to stabilization of chained form systems. Eur. J. Control 8(1), 33–43 (2002)

    Article  MATH  Google Scholar 

  12. Panteley, E., Loría, A., Teel, A.: Relaxed persistency of excitation for uniform asymptotic stability. IEEE Trans. Autom. Control 46(12), 1874–1886 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  13. Loría, A., Panteley, E., Popovic, D., Teel, A.R.: A nested Matrosov theorem and persistency of excitation for uniform convergence in stable nonautonomous systems. IEEE Trans. Autom. Control 50(2), 183–198 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  14. Astolfi, A.: Discontinuous control of nonholonomic systems. Syst. Control Lett. 27(1), 34–45 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  15. Lee, T.C.: Exponential stabilization for nonlinear systems with applications to nonholonomic systems. Automatica 39(6), 1045–1051 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  16. Ge, S.S., Wang, Z., Lee, T.H.: Adaptive stabilization of uncertain nonholonomic systems by state and output feedback. Automatica 39(8), 1451–1460 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  17. Floquet, T., Barbot, J.P., Perruquetti, W.: Higher-order sliding mode stabilization for a class of nonholonomic perturbed systems. Automatica 39(6), 1077–1083 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  18. Sordalen, O.J., Egeland, O.: Exponential stabilization of nonholonomic chained systems. IEEE Trans. Autom. Control 40(1), 35–49 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  19. M’Closkey, R.T., Murray, R.M.: Exponential stabilization of driftless nonlinear control systems using homogeneous feedback. IEEE Trans. Autom. Control 42(5), 614–628 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  20. Hu, Y., Ge, S.S., Su, C.Y.: Stabilization of uncertain nonholonomic systems via time-varying sliding mode control. IEEE Trans. Autom. Control 49(5), 757–763 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  21. Kolmanovsky, I., McClamroch, N.H.: Developments in nonholonomic control problems. IEEE Control Syst. 15(6), 20–36 (1995)

    Article  Google Scholar 

  22. Morin, P., Samson, C.: Motion control of wheeled mobile robots. Handbook of Robotics. Springer, Berlin, Germany pp. 799–826 (2008)

  23. Dawson, D.M., Zergeroglu, E., Behal, A., Dixon, W.E.: Nonlinear Control of Wheeled Mobile Robots. Springer, Berlin (2001)

    MATH  Google Scholar 

  24. Zhong, G., Kobayashi, Y., Emaru, T., et al.: Optimal control of the dynamic stability for robotic vehicles in rough terrain. Nonlinear Dyn. 73(1–2), 981–992 (2013)

    Article  MathSciNet  Google Scholar 

  25. Cui, M., Huang, R., Liu, X., Liu, H., Sun, D.: Adaptive tracking control of wheeled mobile robots with unknown Longitudinal and Lateral slipping parameters. Nonlinear Dyn. 78(3), 1811–1826 (2014)

    Article  MathSciNet  Google Scholar 

  26. Hendzel, Z.: An adaptive critic neural network for motion control of a wheeled mobile robot. Nonlinear Dyn. 50(4), 849–855 (2007)

    Article  MATH  Google Scholar 

  27. Jiang, Z.P.: Nijmeijer H: Tracking control of mobile robots: A case study in backstepping. Automatica 33(7), 1393–1399 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  28. Dixon, W.E., Dawson, D.M., Zhang, F., Zergeroglu, E.: Global exponential tracking control of a mobile robot system via a PE condition. IEEE Trans. Syst., Man, Cybern. B 30(1), 129–142 (2000)

    Article  Google Scholar 

  29. Walsh, G., Tilbury, D., Sastry, S., Murray, R., Laumond, J.P.: Stabilization of trajectories for systems with nonholonomic constraints. IEEE Trans. Autom. Control 39(1), 216–222 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  30. Jang, Z.P.: A unified Lyapunov framework for stabilization and tracking of nonholonomic systems. In: Proceedings 38th IEEE Conference Decision Control, Phoenix, AZ, USA, pp. 2088–2093 (Dec. 1999)

  31. Jiang, Z.P., Nijmeijer, H.: A recursive technique for tracking control of nonholonomic systems in chained form. IEEE Trans. Autom. Control 44(2), 265–279 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  32. Lefeber, E., Robertsson, A., Nijmeijer, H.: Linear controllers for exponential tracking of systems in chained-form. Int. J. Robust Nonlinear Control 10(4), 243–263 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  33. Lee, T.C., Jang, Z.P.: A generalization of Krasovskii-LaSalle theorem for nonlinear time-varying systems: Converse results and applications. IEEE Trans. Autom. Control 50(8), 1147–1163 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  34. Dong, W., Huo, W., Tso, S.K., Xu, W.L.: Tracking control of uncertain dynamic nonholonomic system and its application to wheeled mobile robots. IEEE Trans. Robot. Autom. 16(6), 870–874 (2000)

    Article  Google Scholar 

  35. Dong, W., Xu, W.L.: Adaptive tracking control of uncertain nonholonomic dynamic system. IEEE Trans. Autom. Control 46(3), 450–454 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  36. Shojaei, K., Shahri, A.M.: Adaptive robust time-varying control of uncertain non-holonomic robotic systems. IET Control Theory Appl. 6(1), 90–102 (2012)

    Article  MathSciNet  Google Scholar 

  37. Lizarraga, D.A.: Obstructions to the existence of universal stabilizers for smooth control systems. Math. Control, Signal Syst. 16(4), 255–277 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  38. Lee, T.C., Jang, Z.P.: New cascade approach for global \(\kappa \)-exponential tracking of underactuated ships. IEEE Trans. Autom. Control 49(12), 2297–2303 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  39. Atherton, D.P., Majhi, S.: Limitations of PID controllers. Proc. American Control Conf. 6, 3843–3847 (1999)

    Google Scholar 

  40. Butt, C., Rahman, M.A.: Limitations of simplified fuzzy logic controller for IPM motor drive. Ind. Appl. Conf. 3, 1891–1898 (2004)

    Google Scholar 

  41. Wang, Y., Miao, Z., Zhong, H., et al.: Simultaneous Stabilization and Tracking of Nonholonomic Mobile Robots: A Lyapunov-Based Approach. IEEE Trans. Control Syst. Technol. 23(4), 1440–1450 (2015)

    Article  Google Scholar 

  42. Lee, J.H., Lin, C., Lim, H., Lee, J.M.: Sliding Mode Control for Trajectory Tracking of Mobile Robot in the RFID Sensor Space. Int. J. Control Autom. Syst. 7(3), 429–435 (2009)

    Article  Google Scholar 

  43. Slotine, J.J., Li, W.P.: Applied Nonlinear Control. Prentice-Hall, Englewood Cliffs, New Jersey (1991)

    MATH  Google Scholar 

  44. Jakubiak, J., Lefeber, E., Tchoń, K., et al.: Two observer-based tracking algorithms for a unicycle mobile robot. Int. J. Appl. Math. Comput. Sci. 12(4), 513–522 (2002)

    MATH  MathSciNet  Google Scholar 

  45. Noijen, S.P.M., Lambrechts, P.F., Nijmeijer, H.: An observer-controller combination for a unicycle mobile robot. Int. J. Control 78(2), 81–87 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  46. Shang, Y.: Consensus seeking over Markovian switching networks with time-varying delays and uncertain topologies. Appl. Math. Comput. 273, 1234–1245 (2015)

    MathSciNet  Google Scholar 

  47. Shang, Y.: Average consensus in multi-agent systems with uncertain topologies and multiple time-varying delays. Linear Algebra Appl. 459(3), 411–429 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  48. Shang, Y.: Group pinning consensus under fixed and randomly switching topologies with acyclic partition. Netw. Heterog. Media 9(3), 553–573 (2014)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported partly by the National Natural Science Foundation of China (No. U1404614, No. 61503202), the Henan Province Education Department Foundation of China (No.17A413002, No.14B120003), the Henan Province Scientific and Technological Foundation of China (No. 152102210336).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingyue Cui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, M., Liu, H., Liu, W. et al. Orientation-error observer-based tracking control of nonholonomic mobile robots. Nonlinear Dyn 90, 935–949 (2017). https://doi.org/10.1007/s11071-017-3703-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3703-y

Keywords

Navigation