Skip to main content
Log in

Nonlinear analysis of a shimmying wheel with contact-force characteristics featuring higher-order discontinuities

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this study, the yaw dynamics of a towed caster wheel system is analysed via an in-plane, one degree-of-freedom mechanical model. The force and aligning torque generated by the elastic tyre are calculated by means of a semi-stationary tyre model, in which the piecewise-smooth characteristic of the tyre forces is also considered, resulting in a dynamical system with higher-order discontinuities. The focus of our analysis is the Hopf bifurcation affected by the non-smoothness of the system. The structure of the analysis is organised in a similar way as in case of smooth bifurcations. Firstly, the centre-manifold reduction is performed, then we compose the normal form of the bifurcation. Based on the Galerkin technique an approximate, semi-analytical method to calculate the limit cycles is introduced and compared with the method of collocation. The analysis provides a deeper insight into the development of the vibrations associated with wheel shimmy and demonstrate how the non-smoothness due to contact-friction influences the dynamic behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Beregi, S., Takács, D., Stépán, G.: Tyre induced vibrations of the car-trailer system. J. Sound Vib. 362, 214–227 (2016)

    Article  Google Scholar 

  2. Besselink, I.J.M.: Shimmy of aircraft main landing gears. Ph.D. thesis, Technical University of Delft, The Netherlands (2000)

  3. di Bernardo, M., Budd, C.J., Champneys, A.R., Kowalczyk, P.: Piecewise-Smooth Dynamical Systems: Theory and Applications. Springer, Berlin (2008)

    MATH  Google Scholar 

  4. di Bernardo, M., Hogan, S.J.: Discontinuity-induced bifurcations of piecewise smooth dynamical systems. Philos. Trans. R. Soc. 368, 4915–4935 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  5. Darling, J., Tilley, D., Gao, B.: An experimental investigation of car-trailer high-speed stability. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 223(4), 471–484 (2009). doi:10.1243/09544070jauto981

    Article  Google Scholar 

  6. Fletcher, C.A.J.: Computational Galerkin Methods. Springer, Berlin (1984)

    Book  MATH  Google Scholar 

  7. Gipser, M.: FTire—the tire simulation model for all applications related to vehicle dynamics. Veh. Syst. Dyn. 45(Supplement 1), 139–151 (2007)

    Article  Google Scholar 

  8. Holmes, J., Guckenheimer, P.: Nonlinear Oscillations Dynamical Systems and Bifurcations of Vector Fields. Springer, New York (2002)

    MATH  Google Scholar 

  9. Hölscher, H., Tewes, M., Botkin, N., Löhndorf, M., Hoffmann, K., Quandt, E.: Modeling of pneumatic tires by a finite element model for the development a tire friction remote sensor. Comput. Struct. 28, 1–17 (2004)

    Google Scholar 

  10. Korunovic, N., Trajanovic, M., Stojkovic, M., Misic, D., Milovanovic, J.: Finite element analysis of a tire steady rolling on the drum and comparison with experiment. J. Mech. Eng. 57(12), 888–897 (2011)

    Article  Google Scholar 

  11. Kuznetsov, Y.: Elements of Applied Bifurcation Theory. Springer, New York (2004)

    Book  MATH  Google Scholar 

  12. Leine, R.: Bifurcations of equilibria in non-smooth continuous system. Physica D 223, 121–137 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  13. Pacejka, H.B.: The wheel shimmy phenomenon. Ph.D. thesis, Technical University of Delft, The Netherlands (1966)

  14. Pacejka, H.B.: Tyre and Vehicle Dynamics. Elsevier Butterworth-Heinemann, Burlington (2002)

    MATH  Google Scholar 

  15. Pacejka, H.B., Bakker, E.: The magic formula tyre model. Veh. Syst. Dyn. 21, 1–18 (1991)

    Article  Google Scholar 

  16. Rossa, F.D., Mastinu, G., Piccardi, C.: Bifurcation analysis of an automobile model negotiating a curve. Veh. Syst. Dyn. 50(10), 1539–1562 (2012)

    Article  Google Scholar 

  17. Sharp, R.S., Evangelou, S., Limebeer, D.J.N.: Advances in the modelling of motorcycle dynamics. Multibody Syst. Dyn. 12(3), 251–283 (2004)

    Article  MATH  Google Scholar 

  18. Sharp, R.S., Fernańdez, M.A.A.: Car-caravan snaking–part 1: the influence of pintle pin friction. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 216(7), 707–722 (2002)

    Article  Google Scholar 

  19. Simpson, D.J.W.: Bifurcations in piecewise-smooth continuous systems. World Scientific Publishing Co. Pte. Ltd, Singapore (2010)

    Book  MATH  Google Scholar 

  20. Simpson, D.J.W., Meiss, J.D.: Andronov-hopf bifurcations in planar, piecewise-smootj, continuous flows. Phys. Lett. A 371(3), 213–220 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  21. Takács, D., Stépán, G.: Micro-shimmy of towed structures in experimentally uncharted unstable parameter domain. Veh. Syst. Dyn. 50(11), 1613–1630 (2012). doi:10.1080/00423114.2012.691522

    Article  Google Scholar 

  22. Takács, D., Stépán, G.: Contact patch memory of tyres leading to lateral vibrations of four-wheeled vehicles. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. (2013). doi:10.1098/rsta.2012.0427

  23. Takács, D., Stépan, G., Hogan, S.: Isolated large amplitude periodic motions of towed rigid wheels. Nonlinear Dyn. 52, 27–34 (2008)

    Article  MATH  Google Scholar 

  24. Terkovics, N., Neild, S., Lowenberg, M., Krauskpof, B.: Bifurcation analysis of a coupled nose landing gear-fuselage system. In: Proceedings of AIAA 2012, pp. 1–14. AIAA, Minneapolis, Minnesote, USA (2012). Paper No. AIAA 2012-4731

  25. Thota, P., Krauskopf, B., Lo, M.: Multi-parameter bifurcation study of shimmy oscillations in a dual-wheel aircraft nose landing gear. Nonlinear Dyn. 70, 1675–1688 (2012)

    Article  MathSciNet  Google Scholar 

  26. Trefethen, L.: Spectral Methods in Matlab. SIAM, Philadelphia (2000)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

This research was supported by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sándor Beregi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beregi, S., Takács, D. & Hős, C. Nonlinear analysis of a shimmying wheel with contact-force characteristics featuring higher-order discontinuities. Nonlinear Dyn 90, 877–888 (2017). https://doi.org/10.1007/s11071-017-3699-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3699-3

Keywords

Navigation