Skip to main content
Log in

Design of a steering control law for an autonomous underwater vehicle using nonlinear \(\mathscr {H}_{\infty }\) state feedback technique

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper proposes a new robust nonlinear \(\mathscr {H}_{\infty }\) state feedback (NHSF) controller for an autonomous underwater vehicle (AUV) in steering plane. A three-degree-of-freedom nonlinear model of an AUV has considered for developing a steering control law. In this, the energy dissipative theory is used which leads to form a Hamilton–Jacobi–Isaacs (HJI) inequality. The nonlinear \(\mathscr {H}_{\infty }\) control algorithm has been developed by solving HJI equation such that the AUV tracks the desired yaw angle accurately. Furthermore, a path following control has been implemented using the NHSF control algorithm for various paths in steering plane. Simulation studies have been carried out using MATLAB/Simulink environment to verify the efficacies of the proposed control algorithm for AUV. From the results obtained, it is concluded that the proposed robust control algorithm exhibits a good tracking performance ensuring internal stability and significant disturbance attenuation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

NED:

North, east and down direction

\(\{B\}\) :

Body-fixed frame

\(\{E\}\) :

NED frame

\(\{R\}\) :

Serret–Frenet reference frame

m :

Mass of the AUV

W :

Total weight of AUV

B :

Buoyancy force exerted by water on AUV

\(I_x,I_y,I_z\) :

Moments of inertia about x-, y- and z-axes in body-fixed frame

(\(x_\mathrm{B}, y_\mathrm{B}, z_\mathrm{B}\)):

Center of buoyancy

(\(x_\mathrm{G}, y_\mathrm{G}, z_\mathrm{G}\)):

Center of gravity

\(T_\mathrm{s}\) :

Total thrust in horizontal plane

\(\delta _\mathrm{s}\) :

Stern angle

\(\delta _\mathrm{r}\) :

Rudder angle

\(d_\mathrm{r/e}\) :

Position of \(\{R\}\) frame relative to \(\{E\}\) frame

\(d_\mathrm{b/e}\) :

Position of \(\{B\}\) frame relative to \(\{E\}\) frame

\(d_\mathrm{b/r}\) :

Position of \(\{B\}\) frame relative to \(\{R\}\) frame

\(s_\mathrm{r}\) :

Curvilinear abscissa along the path

\(\psi _\mathrm{r}\) :

Yaw angle between \(\{E\}\) and \(\{R\}\) coordinate system

s:

Parameters of steering plane

D:

Desired values for path following

r:

Parameters of Serret–Frenet frame

References

  1. Fossen, T.I.: Guidance and Control of Ocean Vehicles. Wiley, New York (1994)

    Google Scholar 

  2. Subudhi, B., Mukherjee, K., Ghosh, S.: A static output feedback control design for path following of autonomous underwater vehicle in vertical plane. Ocean Eng. 63, 72–76 (2013)

    Article  Google Scholar 

  3. Aguiar, A., Hespanha, J.: Trajectory tracking and path-following of underactuated autonomous vehicles with parametric modeling uncertainty. IEEE Trans, Autom. Control 52(8), 1362–1379 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  4. Refsnes, J., Sorensen, A., Pettersen, K.: Model-based output feedback control of slender-body underactuated AUVs: theory and experiments. IEEE Trans. Control Syst. Technol. 16(5), 930–946 (2008)

    Article  Google Scholar 

  5. Ataei, M., Yousefi-Koma, A.: Three-dimensional optimal path planning for waypoint guidance of an autonomous underwater vehicle. Robo. Auton. Syst. 67, 23–32 (2015)

    Article  Google Scholar 

  6. Khalil, H.K.: Nonlinear Systems. Prentice Hall, New Jewsey (2002)

    MATH  Google Scholar 

  7. Silvestre, C., Pascoal, A.: Control of the INFANTE AUV using gain scheduled static output feedback. Control Eng. Pract. 12(12), 1501–1509 (2004)

    Article  Google Scholar 

  8. Zakeri, E., Farahat, S., Moezi, S.A., Zare, A.: Path planning for unmanned underwater vehicle in 3D space with obstacles using spline-imperialist competitive algorithm and optimal interval type-2 fuzzy logic controller. Lat. Am. J. Solids Struct. 13, 1054–1085 (2016)

    Article  Google Scholar 

  9. Ghommam, J., Mnif, F., Benali, A., Derbel, N.: Nonsingular Serret–Frenet based path following control for an underactuated surface vessel. J. Dyn. Syst. Meas. Control 131(2), 1–8 (2009)

    Article  Google Scholar 

  10. Lapierre, L., Jouvencel, B.: Robust nonlinear path-following control of an AUV. IEEE J. Ocean. Eng. 33(2), 89–102 (2008)

    Article  Google Scholar 

  11. Cheng, J., Yi, J., Zhao, D.: Design of a sliding mode controller for trajectory tracking problem of marine vessels. IET Control Theory Appl. 1(1), 233–237 (2007)

    Article  MathSciNet  Google Scholar 

  12. Zakeri, E., Farahat, S., Moezi, S.A., Zare, A.: Optimal robust control of an unmanned underwater vehicle independent of hydrodynamic forces using firefly optimization algorithm. In: Proceedings of the 24th Annual International Conference on Mechanical Engineering (ISME-2016) (2016)

  13. Zakeri, E., Farahat, S., Moezi, S.A., Zare, A.: Robust sliding mode control of a mini unmanned underwater vehicle equipped with a new arrangement of water jet propulsions: simulation and experimental study. Appl. Ocean Res. 59, 521–542 (2016)

    Article  Google Scholar 

  14. Aliyu, M.D.S.: Nonlinear \({H}_\infty \) Control Hamiltonian Systems and Hamilton–Jacobi Equations. CRC Press, Boca Raton (2011)

    Book  MATH  Google Scholar 

  15. Doyle, J.C., Glover, K., Khargonekar, P.P., Francis, B.A.: State-space solutions to standard \({H}_2\) and \({H}_\infty \) control problems. IEEE Trans. Autom. Control 34(8), 831–847 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  16. Ball, J.A., Helton, J.W., Walker, M.L.: \({H}_\infty \) control for nonlinear systems with output feedback. IEEE Trans. Autom. Control 38(4), 546–559 (1993)

    Article  MATH  Google Scholar 

  17. Isidori, A., Astolfi, A.: Disturbance attenuation and \({H}_\infty \)-control via measurement feedback in nonlinear systems. IEEE Trans. Autom. Control 37(9), 1283–1293 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  18. Isidori, A., Kang, W.: \({H}_\infty \) control via measurement feedback for general nonlinear systems. IEEE Trans. Autom. Control 40(3), 466–472 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  19. van der Schaft, A.J.: \({L}_2\)- gain analysis of nonlinear systems and nonlinear state-feedback \({H}_\infty \) control. IEEE Trans. Autom. Control 37(6), 770–784 (1992)

    Article  MATH  Google Scholar 

  20. Willems, J.C.: Dissipative dynamical systems part I: general theory. Arch. Ration. Mech. Anal. 45(5), 321–351 (1972)

    Article  MATH  Google Scholar 

  21. Dalsmo, M., Egeland, O.: Tracking of rigid body motion via nonlinear H-infinity control. In: Proceedings of the 13th IFAC World Congress

  22. Tsiotras, P., Corless, M., Rotea, M.A.: An \({L}_2\) disturbance attentuation solution to the nonlinear benchmark problem. Int. J. Robust Nonlinear Control 8, 311–330 (1998)

    Article  MATH  Google Scholar 

  23. Yazdanpanah, M.J., Khorasani, K., Patel, R.V.: Uncertainty compensation for a flexible-link manipulator using nonlinear \({H}_\infty \) control. Int. J. Control 69(6), 753–771 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  24. Hioe, D., Hudon, N., Bao, J.: Decentralized nonlinear control of process networks based on dissipativity: a Hamilton–Jacobi equation approach. J. Process Control 24(3), 172–187 (2014)

    Article  Google Scholar 

  25. Collins, E.G., Sadhukhan, D., Watson, L.T.: Robust controller synthesis via non-linear matrix inequalities. Int. J. Control 72(11), 971–980 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  26. Saat, S., Nguang, S.K., Darsono, A., Azman, N.: Nonlinear \({H}_\infty \) feedback control with integrator for polynomial discrete-time systems. J. Frankl. Inst. 351(8), 4023–4038 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  27. Stojanovic, V., Nedic, N.: A nature inspired parameter tuning approach to cascade control for hydraulically driven parallel robot platform. J. Optim. Theory Appl. 168(1), 332–347 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  28. Nedic, N., Stojanovic, V., Djordjevic, V.: Optimal control of hydraulically driven parallel robot platform based on firefly algorithm. Nonlinear Dyn. 82(3), 1457–1473 (2015)

    Article  MathSciNet  Google Scholar 

  29. Stojanovic, V., Nedic, N.: Joint state and parameter robust estimation of stochastic nonlinear systems. Int. J. Robust Nonlinear Control 26(14), 3058–3074 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  30. Stojanovic, V., Nedic, N.: Identification of time-varying oe models in presence of non-Gaussian noise: application to pneumatic servo drives. Int. J. Robust Nonlinear Control 26(18), 3974–3995 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  31. Stojanovic, V., Nedic, N.: Robust identification of OE model with constrained output using optimal input design. J. Frankl. Inst. 353(2), 576–593 (2016)

    Article  MathSciNet  Google Scholar 

  32. Stojanovic, V., Nedic, N., Prsic, D., Dubonjic, L.: Optimal experiment design for identification of ARX models with constrained output in non-Gaussian noise. Appl. Math. Modell. 40(1314), 6676–6689 (2016)

    Article  MathSciNet  Google Scholar 

  33. Hu, S.S., Chang, B.C.: Design of a nonlinear \({H}_\infty \) controller for the inverted pendulum system. In: Proceedings of IEEE International Conference on Control Applications, vol. 2, pp. 699–703 (1998)

  34. Ferreira, H.C., Rocha, P.H., Sales, R.M.: Nonlinear \({H}_\infty \) control and the Hamilton–Jacobi–Isaacs equation. In: Proceedings of the 17th IFAC World Congress, Seoul, South Korea, vol. 17, no. 1, pp. 188–193 (2008)

  35. Prestero, T.J.: Verification of a six-degree of freedom simulation model for the remus autonomous underwater vehicle. Master’s Thesis, Department of Ocean and Mechanical Engineering, Massachusetts institute of technology (2001)

  36. Silvestre, C.: Multi-objective optimization theory with applications to the integrated design of controllers/plants for autonomous vehicles. Ph.D. Dissertation, Instituto Superior Technico (IST), Robot. Dept., Lisbon, Portugal, June 2000

  37. Khodayari, M.H., Balochian, S.: Modeling and control of autonomous underwater vehicle (auv) in heading and depth attitude via self-adaptive fuzzy pid controller. J. Mar. Sci. Technol. 20(3), 559–578 (2015)

    Article  Google Scholar 

  38. Lapierre, L., Soetanto, D.: Nonlinear path-following control of an AUV. Ocean Eng. 34(1112), 1734–1744 (2007)

  39. Borhaug, E.: Nonlinear control and synchronization of mechanical systems. Ph.D. Dissertation, Norwegian University of Science and Technology (2008)

  40. Al’Brekht, E.: On the optimal stabilization of nonlinear systems. J. Appl. Math. Mech. 25(5), 1254–1266 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  41. Yu, Y.Y., Jiang, T.M.: Generation of non-Gaussian random vibration excitation signal for reliability enhancement test. Chin. J. Aeronaut. 20(3), 236–239 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bidyadhar Subudhi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahapatra, S., Subudhi, B. Design of a steering control law for an autonomous underwater vehicle using nonlinear \(\mathscr {H}_{\infty }\) state feedback technique. Nonlinear Dyn 90, 837–854 (2017). https://doi.org/10.1007/s11071-017-3697-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3697-5

Keywords

Navigation