Skip to main content
Log in

Dynamic anti-windup compensation of nonlinear time-delay systems using LPV approach

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, a novel decoupled architecture-based anti-windup compensator (AWC) synthesis technique is presented for the constrained nonlinear time-delay systems. The proposed decoupling AWC architecture is applicable to both stable and unstable nonlinear time-delay systems and it simultaneously fulfills the requirements of attainment of stability and reasonable closed-loop performance. The proposed AWC architecture is modified with the aim to characterize the synthesis goals of the delayed nonlinear AWC by using the linear parameter varying model-based reformulation property of the Lipschitz nonlinearities. To compute the gain matrices for global or local stability through the proposed AWC, several sufficient conditions have been formulated using a Lyapunov–Krasovskii functional, the \(L_2 \) gain minimization, the generalized sector condition and the information of bounds of delay. The proposed approach is less conservative than the existing methods due to useful terms in handling the range of time-delay. Further, the resultant method is better than the conventional methods owing to the incorporation of reformulation property for efficient handling of the Lipchitz nonlinearities. The effectiveness of the proposed AWC schemes is demonstrated via simulation results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Slotine, J.-J.E., Li, W.: Applied Nonlinear Control. Prentice-Hall, Englewood Cliffs (1991)

    MATH  Google Scholar 

  2. Tarbouriech, S., Turner, M.: Anti-windup design: an overview of some recent advances and open problems. IET Control Theory Appl. 3, 1–19 (2009). doi:10.1049/iet-cta:20070435

    Article  MathSciNet  Google Scholar 

  3. Stein, G.: Respect the unstable. IEEE Control Syst. 23, 12–25 (2003). doi:10.1109/MCS.2003.1213600

    Article  Google Scholar 

  4. Anonymous: Why the gripen crashed, Aerosp. Am. 32, 11 (1994)

  5. Dornheim, M.A.: Report pinpoints factors leading to YF-22 crash. Aviat. Week Space Technol. 137(19), 53–54 (1992)

    Google Scholar 

  6. Tyan, F., Bernstein, D.S.: Anti-windup compensator synthesis for systems with saturation actuators. Int. J. Robust Nonlinear Control 5, 521–537 (1995). doi:10.1002/rnc.4590050510

    Article  MathSciNet  MATH  Google Scholar 

  7. Saberi, A., Lin, Z., Teel, A.R.: Control of linear systems with saturating actuators. IEEE Trans. Autom. Control 41, 368–378 (1996). doi:10.1109/9.486638

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, Y., Fei, S., Zhang, K.: Stabilization of impulsive switched linear systems with saturated control input. Nonlinear Dyn. 69, 793–804 (2012). doi:10.1007/s11071-011-0305-y

    Article  MathSciNet  MATH  Google Scholar 

  9. Park, B.Y., Yun, S.W., Park, P.G.: H-2 state-feedback control for LPV systems with input saturation and matched disturbance. Nonlinear Dyn. 67, 1083–1096 (2012). doi:10.1007/s11071-011-0052-0

    Article  MathSciNet  MATH  Google Scholar 

  10. Ran, M., Wang, Q., Dong, C., Ni, M.: Multistage anti-windup design for linear systems with saturation nonlinearity: enlargement of the domain of attraction. Nonlinear Dyn. 80, 1543–1555 (2015). doi:10.1007/s11071-015-1961-0

    Article  Google Scholar 

  11. Rehan, M., Hong, K.-S.: Decoupled-architecture-based nonlinear anti-windup design for a class of nonlinear systems. Nonlinear Dyn. 73, 1955–1967 (2013). doi:10.1007/s11071-013-0916-6

    Article  MathSciNet  MATH  Google Scholar 

  12. Edwards, C., Postlethwaite, I.: An anti-windup scheme with closed-loop stability considerations. Automatica 35, 761–765 (1999). doi:10.1016/S0005-1098(98)00225-8

    Article  MathSciNet  MATH  Google Scholar 

  13. Ahmed, A., Rehan, M., Iqbal, N.: Delay-dependent anti-windup synthesis for stability of constrained state delay systems using pole-constraints. ISA Trans. 50(2), 249–255 (2011). doi:10.1016/j.isatra.2010.11.003

    Article  Google Scholar 

  14. Gu, K., Khrtonov, V.L., Chen, J.: Stability of Time-Delay Systems. Birkhäuser, Boston (2003)

    Book  Google Scholar 

  15. Ahn, C.K., Shi, P., Wu, L.: Receding horizon stabilization and disturbance attenuation for neural networks with time-varying delay. IEEE Trans. Cybern. 45, 2680–2692 (2015). doi:10.1109/TCYB.2014.2381604

    Article  Google Scholar 

  16. Niculescu, S.L.: Delay Effects on Stability: A Robust Control Approach. Springer, London (2001)

    MATH  Google Scholar 

  17. Richard, J.-P.: Time-delay systems: an overview of some recent advances and open problems. Automatica 39(10), 1667–1694 (2003). doi:10.1016/S0005-1098(03)00167-5

    Article  MathSciNet  MATH  Google Scholar 

  18. Choi, H.H., Chung, M.J.: An LMI approach to \(H_\infty \) controller design for linear time-delay systems. Automatica 33(4), 737–739 (1997). doi:10.1016/S0005-1098(96)00242-7

    Article  MathSciNet  MATH  Google Scholar 

  19. He, Y., Wang, Q.-G., Lin, C., Wu, M.: Delay-range-dependent stability for systems with time-varying delay. Automatica 43(2), 371–376 (2007). doi:10.1016/j.automatica.2006.08.015

    Article  MathSciNet  MATH  Google Scholar 

  20. Lehman, B., Shujaee, K.: Delay independent stability conditions and decay estimates for time-varying functional differential equations. IEEE Trans. Autom. Control 39(8), 1673–1676 (1994). doi:10.1109/9.310048

    Article  MathSciNet  MATH  Google Scholar 

  21. Yan, H., Zhang, H., Meng, M.Q.-H.: Delay-range-dependent robust \(H_\infty \) control for uncertain systems with interval time-varying delays. Neurocomputing 73(7), 1235–1243 (2010). doi:10.1016/j.neucom.2010.01.004

    Article  Google Scholar 

  22. Tarbouriech, S., da Silva, J.G., Garcia, G.: Delay-dependent anti-windup loops for enlarging the stability region of time delay systems with saturating inputs. ASME J. Dyn. Syst. Meas. Control 125(2), 265–267 (2003). doi:10.1115/1.1569953. doi:10.3166/ejc.12.622-634

  23. da Silva Jr, J.M.G., Tarbouriech, S., Garcia, G.: Anti-windup design for time-delay systems subject to input saturation an LMI-based approach. Eur. J. Control 12(6), 622–634 (2006). doi:10.3166/ejc.12.622-634

    Article  MathSciNet  MATH  Google Scholar 

  24. Tarbouriech, S., Da Silva, Gomes, Jr, J.M., Garcia, G.: Delay-dependent anti-windup strategy for linear systems with saturating inputs and delayed outputs. Int. J. Robust Nonlinear Control 14(7), 665–682 (2004). doi:10.1002/rnc.899

    Article  MathSciNet  MATH  Google Scholar 

  25. Park, J.-K., Choi, C.-H., Choo, H.: Dynamic anti-windup method for a class of time-delay control systems with input saturation. Int. J. Robust Nonlinear Control 10(6), 457–488 (2000). doi:10.1002/(SICI)1099-1239(200005)10:6<457::AID-RNC488>3.0.CO;2-P

  26. Zaccarian, L., Nešić, D., Teel, A.R.: L\(_{2}\) anti-windup for linear dead-time systems. Syst. Control Lett. 54(12), 1205–1217 (2005). doi:10.1016/j.sysconle.2005.04.009

    Article  MathSciNet  MATH  Google Scholar 

  27. Hussain, M., Rehan, M.: Nonlinear time-delay anti-windup compensator synthesis for nonlinear time-delay systems: a delay-range-dependent approach. Neurocomputing 186, 54–65 (2016). doi:10.1016/j.neucom.2015.12.078

    Article  Google Scholar 

  28. Zhou, Q., Li, H., Wu, C., Wang, L., Ahn, C.K.: Adaptive fuzzy control of nonlinear systems with un-modeled dynamics and input saturation using small-gain approach. IEEE Trans. Syst. Man Cybern. Syst. 99, 1–11 (2016). doi:10.1109/TSMC.2016.2586108

    Google Scholar 

  29. Lee, S.M., Kwon, O.M., Park, J.H.: Regional asymptotic stability analysis for discrete-time delayed systems with saturation nonlinearity. Nonlinear Dyn. 67, 885–892 (2012). doi:10.1007/s11071-011-0032-4

    Article  MathSciNet  MATH  Google Scholar 

  30. Gu, K.: An integral inequality in the stability problem of time-delay systems. In: Proceedings of the 39th IEEE CDC, vol. 3, pp. 2805–2810, Sydney (December 2000). doi:10.1109/CDC.2000.914233

  31. Zemouche, A., Boutayeb, M.: On LMI conditions to design observers for Lipschitz nonlinear systems. Automatica 49, 585–591 (2013). doi:10.1016/j.automatica.2012.11.029

    Article  MathSciNet  MATH  Google Scholar 

  32. Ting, C.-S., Chang, Y.-N.: Robust anti-windup controller design of time-delay fuzzy systems with actuator saturations. Inf. Sci. 181(15), 3225–3245 (2011). doi:10.1016/j.ins.2011.03.015

    Article  MathSciNet  MATH  Google Scholar 

  33. Ahmad, S., Rehan, M., Hong, K.-S.: Observer-based robust control of one-sided Lipschitz nonlinear. ISA Trans. 65, 230–240 (2016). doi:10.1016/j.isatra.2016.08.010

    Article  Google Scholar 

  34. Malik, M., Mohan, S.R.: Cone complementarity problems with finite solution sets. Oper. Res. Lett. 34, 121–126 (2006). doi:10.1016/j.orl.2005.03.007

    Article  MathSciNet  Google Scholar 

  35. Ahn, C.K., Shi, P., Basin, M.V.: Two-dimensional dissipative control and filtering for Roesser model. IEEE Trans. Autom. Control 60, 1745–1759 (2015). doi:10.1109/TAC.2015.2398887

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by Higher Education Commission (HEC) of Pakistan by supporting Ph.D. studies of the second and third authors through indigenous Ph.D. scholarship program (phase II, batch II, 2013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Rehan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akram, A., Hussain, M., us Saqib, N. et al. Dynamic anti-windup compensation of nonlinear time-delay systems using LPV approach. Nonlinear Dyn 90, 513–533 (2017). https://doi.org/10.1007/s11071-017-3678-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3678-8

Keywords

Navigation