Skip to main content
Log in

Active magnetic bearing-based tuned controller to suppress lateral vibrations of a nonlinear Jeffcott rotor system

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Active magnetic bearing system is an up-to-date technology that supports rotors without physical contacts and facilitates the vibration control in rotating machinery. Within this research, a tuned positive position feedback controller is proposed to control the lateral vibrations in a Jeffcott rotor system having cubic and quadratic nonlinearities. The controller is integrated into the system via four electromagnetic poles that act as actuators. The nonlinearity due to the electromagnetic coupling is included in the system model. A second-order approximate solution to the system governing equations is sought by utilizing asymptotic analyses. Bifurcation behaviours are investigated for both the system and controller parameters. The influence of the air-gap size, bias current, disc eccentricity, feedback gain, and control gain on the vibration amplitudes has been explored. The analytical results approved that the proposed controller can reduce the vibration amplitudes close to zero at any spinning speed even at large disc eccentricity. Then, numerical confirmations for the acquired analytical results have been performed that illustrated an excellent agreement with the analytical ones. Finally, a comparison with already published articles is included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

\(q_1 ,\dot{q}_1, \ddot{q}_1\) :

Dimensionless displacement, velocity and acceleration of oscillations in horizontal direction.

\(q_2 ,\dot{q}_, \ddot{q}_2\) :

Dimensionless displacement, velocity and acceleration of oscillations in vertical direction.

\(q_3 ,\dot{q}_2, \ddot{q}_3\) :

Dimensionless displacement, velocity and acceleration of the controller in horizontal direction.

\(q_4 ,\dot{q}_4, \ddot{q}_4\) :

Dimensionless displacement, velocity and acceleration of the controller in vertical direction.

\(\mu _1 ,\mu _2 \) :

Dimensionless linear damping coefficients of both the horizontal and vertical oscillation modes.

\(\mu _3 ,\mu _4 \) :

Dimensionless linear damping coefficients of the controller of both the horizontal and vertical vibration modes.

\(\omega _1 ,\omega _2 \) :

Normalized linear natural frequencies of both the horizontal and vertical oscillation modes.

\(\omega _3 ,\omega _4 \) :

Normalized linear natural frequencies of the controllers.

\(\delta \) :

Dimensionless quadratic and cubic nonlinearity coefficient.

\({\Omega }\) :

The normalized rotor spinning speed.

f :

Dimensionless disc eccentricity.

\(\alpha _j ,j=1,\ldots ,5\) :

Dimensionless control signal gains.

\(\gamma \) :

Dimensionless feedback signal gains.

\(I_0 ,i_u ,i_v \) :

Bias current \((I_0 )\), and control currents \((i_u ,i_v )\) at both the horizontal and vertical directions in ampere.

References

  1. Bleuler, H., Cole, M., Keogh, P., Larsonneur, R., Maslen, E., Nordmann, R., Okada, Y., Schweitzer, G., Traxler, A.: Magnetic Bearings Theory, Design, and Application to Rotating Machinery. Springer, Berlin (2009)

    Google Scholar 

  2. Ji, J.C., Yu, L., Leung, A.Y.T.: Bifurcation behavior of a rotor by active magnetic bearings. J. Sound Vib. 235, 133–151 (2000)

    Article  Google Scholar 

  3. Ji, J.C., Hansen, C.H.: Non-linear oscillations of a rotor in active magnetic bearings. J. Sound Vib. 240, 599–612 (2001)

    Article  Google Scholar 

  4. Ji, J.C., Leung, A.Y.T.: Non-linear oscillations of a rotor magnetic bearing system under superharmonic resonance conditions. Int. J. Nonlinear Mech. 38, 829–835 (2003)

    Article  MATH  Google Scholar 

  5. Saeed, N.A., Eissa, M., El-Ganini, W.A.: Nonlinear oscillations of rotor active magnetic bearings system. Nonlinear Dyn. 74, 1–20 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Eissa, M., Hegazy, U.H., Amer, Y.A.: Dynamic behavior of an AMB supported rotor subject to harmonic excitation. Appl. Math. Model. 32, 1370–1380 (2008)

    Article  MATH  Google Scholar 

  7. Eissa, M., Amer, Y.A., Hegazy, U.H., Sabbah, A.S.: Dynamic behavior of an AMB/supported rotor subject to parametric excitation. J. Vib. Acoust. 128, 646–652 (2006)

    Article  Google Scholar 

  8. Zhang, W., Zhan, X.P.: Periodic and chaotic motions of a rotor-active magnetic bearing with quadratic and cubic terms and time-varying stiffness. Nonlinear Dyn. 41, 331–359 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Zhang, W., Yao, M.H., Zhan, X.P.: Multi-pulse chaotic motions of a rotor-active magnetic bearing system with time-varying stiffness. Chaos Solitons Fractals 27, 175–186 (2006)

    Article  MATH  Google Scholar 

  10. Zhang, W., Zu, J.W., Wang, F.X.: Global bifurcations and chaos for a rotor-active magnetic bearing system with time varying stiffness. Chaos Solitons Fractals 35, 586–608 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kamel, M., Bauomy, H.S.: Nonlinear behavior of a rotor-AMB system under multi-parametric excitations. Meccanica 45, 7–22 (2010)

    Article  MATH  Google Scholar 

  12. Amer, Y.A., Hegazy, U.H.: Resonance behavior of a rotor active magnetic bearing with time-varying stiffness. Chaos Solitons Fractals 34, 1328–1345 (2007)

    Article  Google Scholar 

  13. Eissa, M., Hegazy, U.H., Amer, Y.A.: A time-varying stiffness rotor-active magnetic bearings under combined resonance. J. Appl. Mech. 75, 1–12 (2008)

    Google Scholar 

  14. Amer, Y.A., Hegazy, U.H.: A time-varying stiffness rotor active magnetic bearings under parametric excitation. J. Mech. Eng. Sci. Part C 222, 447–458 (2008)

    Article  Google Scholar 

  15. Eissa, M., Kamel, M., Bauomy, H.S.: Dynamics of an AMB-rotor with time varying stiffness and mixed excitations. Meccanica 47, 585–601 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Eissa, M., Saeed, N.A., El-Ganini, W.A.: Saturation-based active controller for vibration suppression of a four-degree-of-freedom rotor-AMB system. Nonlinear Dyn. 76, 743–764 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ishida, Y., Inoue, T.: Vibration suppression of nonlinear rotor systems using a dynamic damper. J. Vib. Control 13(8), 1127–1143 (2007)

    Article  MATH  Google Scholar 

  18. Saeed, N.A., Kamel, M.: Nonlinear PD-controller to suppress the nonlinear oscillations of horizontally supported Jeffcott-rotor system. Int. J. Nonlinear Mech. 87, 109–124 (2016)

  19. Shan, J., Liu, H., Sun, D.: Slewing and vibration control of a single-link flexible manipulator by positive position feedback (PPF). Mechatronics 15, 487–503 (2005)

    Article  Google Scholar 

  20. Creasy, M.A., Leo, D.J., Farinholt, K.M.: Adaptive positive position feedback for actively absorbing energy in acoustic cavities. J. Sound Vib. 311, 461–472 (2008)

    Article  Google Scholar 

  21. Ahamed, B., Pota, H.R.: Dynamic compensation for control of a rotary wing UAV using positive position feedback. J. Intell. Robot. Syst. 61, 43–56 (2011)

    Article  Google Scholar 

  22. Warminski, J., Bochenski, M., Jarzyna, W., Filipek, P., Augustyinak, M.: Active suppression of nonlinear composite beam vibrations by selected control algorithms. Commun. Nonlinear Sci. Numer. Simul. 16, 2237–2248 (2011)

    Article  Google Scholar 

  23. Shin, C., Hong, C., Jeong, W.B.: Active vibration control of clamped beams using positive position feedback controllers with moment pair. J. Mech. Sci. Technol. 26(3), 731–740 (2012)

    Article  Google Scholar 

  24. El-Ganaini, W.A., Saeed, N.A., Eissa, M.: Positive position feedback (PPF) controller for suppression of nonlinear system vibration. Nonlinear Dyn. 72, 517–537 (2013)

    Article  MathSciNet  Google Scholar 

  25. Omidi, E., Mahmoodi, S.N.: Nonlinear vibration suppression of flexible structures using nonlinear modified positive position feedback approach. Nonlinear Dyn. 79, 835–849 (2015)

    Article  MATH  Google Scholar 

  26. Yabuno, H., Kashimura, T., Inoue, T., Ishida, Y.: Nonlinear normal modes and primary resonance of horizontally supported Jeffcott rotor. Nonlinear Dyn. 66, 377–387 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Yamamoto, T., Ishida, Y.: Linear and Nonlinear Rotor Dynamics. Wiley, Weinheim (2012)

    Google Scholar 

  28. Nayfeh, A., Mook, D.: Nonlinear Oscillations. Wiley, New York (1995)

    Book  MATH  Google Scholar 

  29. Nayfeh, A.: Perturbation Methods. Wiley, New York (1973)

    MATH  Google Scholar 

  30. Nayfeh, A.: Resolving controversies in the application of the method of multiple scales and the generalized method of averaging. Nonlinear Dyn. 40, 61–102 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  31. Slotine, J.-J.E., Li, W.: Applied Nonlinear Control. Prentice Hall, Englewood Cliffs (1991)

    MATH  Google Scholar 

Download references

Acknowledgements

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Saeed.

Ethics declarations

Conflict of interest

The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saeed, N.A., Kamel, M. Active magnetic bearing-based tuned controller to suppress lateral vibrations of a nonlinear Jeffcott rotor system. Nonlinear Dyn 90, 457–478 (2017). https://doi.org/10.1007/s11071-017-3675-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3675-y

Keywords

Navigation