Skip to main content
Log in

Dynamic modeling and performance analysis of the 3-PRRU 1T2R parallel manipulator without parasitic motion

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper investigates the dynamic modeling and performance analysis of the 3-PRRU parallel manipulator; here, P, R and U denote the prismatic, revolute and universal joints, respectively. The studied 3-PRRU parallel manipulator possesses two rotational and one translational degrees of freedom without parasitic motion. For the dynamic modeling, the Newton–Euler formulation with generalized coordinates is employed to establish the system equations of motion for the 3-PRRU parallel manipulator. Then, the dynamic manipulability ellipsoid which provides a quantitative measure of the ability in manipulating the end-effector is adopted to evaluate the dynamic performance of the studied parallel manipulator. In order to demonstrate the feasibility of the proposed modeling and analysis method, numerical simulations are conducted on dynamic response and performance of the studied manipulator. A prototype is built up based on the proposed parallel manipulator. And the presented modeling method can serve the fundamentals for the optimization and control of the prototype in future work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Pouliot, N., Gosselin, C., Nahon, M.: Motion simulation capabilities of three-degree-of-freedom flight simulators. J. Aircr. 35(1), 9–17 (1998)

    Article  Google Scholar 

  2. Ceccarelli, M., Ottaviano, E., Galvagno, M.: A 3-DOF parallel manipulator as earthquake motion simulator. In: Proceedings of the 7th International Conference on Control, Automation, Robotics and Vision (2002)

  3. Miller, K.: Experimental verification of modeling of Delta robot dynamics by direct application of Hamilton’s principle. In: Proceedings of the 1995 IEEE International Conference on Robotics and Automation, vol. 1, pp. 532–537 (1995)

  4. Nabat, V., Rodriguez, M., Company, O., Krut, S., Pierrot, F.: Par4: very high speed parallel robot for pick-and-place. In: 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 553–558 (2005)

  5. Bi, Z., Jin, Y.: Kinematic modeling of Exechon parallel kinematic machine. Robot. Comput. Integr. Manuf. 27(1), 186–193 (2011)

    Article  Google Scholar 

  6. Lacalle, L., Lamikiz, A.: Machine Tools for High Performance Machining. Springer, London (2009)

    Book  Google Scholar 

  7. Asada, H.: A geometrical representation of manipulator dynamics and its application to arm design. J. Dyn. Syst. Measur. Control 105(3), 131–142 (1983)

    Article  MATH  Google Scholar 

  8. Yoshikawa, T.: Dynamic manipulability of robot manipulators. In: Proceedings of the 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 1033–1038 (1985)

  9. Khatib, O.: Inertial properties in robotic manipulation: an object-level framework. Int. J. Robot. Res. 14(1), 19–36 (1995)

    Article  Google Scholar 

  10. Kurazume, R., Hasegawa, T.: A new index of serial-link manipulator performance combining dynamic manipulability and manipulating force ellipsoids. IEEE Trans. Robot. 22(5), 1022–1028 (2006)

    Article  Google Scholar 

  11. Li, Q., Herve, J.: 1T2R parallel mechanisms without parasitic motion. IEEE Trans Robot 26(3), 401–410 (2010)

    Article  Google Scholar 

  12. Chen, Q., Chen, Z., Chai, X., Li, Q.: Kinematic analysis of a 3-axis parallel manipulator: the P3. Adv Mech Eng 5, 589156 (2013)

    Article  Google Scholar 

  13. Chen, G., Wang, H., Lai, X., Lin, Z.: Forward dynamics analysis of spatial parallel mechanisms based on the Newton–Euler method with generalized coordinates. Chin. J. Mech. Eng. 45(7), 41–48 (2009)

    Article  Google Scholar 

  14. Schiehlen, W.: Multibody system dynamics: roots and perspectives. Multibody Syst. Dyn. 1(2), 149–188 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  15. Wittenberg, J.: Dynamics of System of Rigid Bodies. B. G. Teubner, Stuttgart (1977)

    Book  Google Scholar 

  16. Yiu, Y., Cheng, H., Xiong, Z., Liu, G., Li, Z.: On the dynamics of parallel manipulators. In: Proceedings 2001 IEEE International Conference on Robotics and Automation, vol. 4, pp. 3766–3771 (2001)

  17. Geng, Z., Haynes, L., Lee, J., Carroll, R.: On the dynamic model and kinematic analysis of a class of Stewart platforms. Robot. Auton. Syst. 9(4), 237–254 (1992)

    Article  Google Scholar 

  18. Bhattacharya, S., Hatwal, H., Ghosh, A.: An on-line parameter estimation scheme for generalized Stewart platform type parallel manipulators. Mech. Mach. Theory 32(1), 79–89 (1997)

    Article  MATH  Google Scholar 

  19. Lebret, G., Liu, K., Lewis, F.: Dynamic analysis and control of a Stewart platform manipulator. J. Robot. Syst. 10(5), 629–655 (1993)

    Article  MATH  Google Scholar 

  20. Lee, K., Shah, D.: Dynamic analysis of a three-degrees-of-freedom in-parallel actuated manipulator. IEEE J. Robot. Autom. 4(3), 361–367 (1988)

    Article  Google Scholar 

  21. Pendar, H., Vakil, M., Zohoor, H.: Efficient dynamic equations of 3-RPS parallel mechanism through lagrange method. In 2004 IEEE Conference on Robotics, Automation and Mechatronics, vol. 2, pp. 1152–1157 (2004)

  22. Diaz-Rodriguez, M., Carretero, J., Bautista-Quintero, R.: Solving the dynamic equations of a 3-PRS parallel manipulator for efficient model-based designs. Mech. Sci. 7(1), 9–17 (2016)

    Article  Google Scholar 

  23. Ahmadi, M., Dehghani, M., Eghtesad, M., Khayatian, A.: Inverse dynamics of hexa parallel robot using Lagrangian dynamics formulation. In: 2008 International Conference on Intelligent Engineering Systems, pp. 145–149 (2008)

  24. Li, Y., Staicu, S.: Inverse dynamics of a 3-PRC parallel kinematic machine. Nonlinear Dyn. 67(2), 1031–1041 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Yuan, W., Tsai, M.: A novel approach for forward dynamic analysis of 3-PRS parallel manipulator with consideration of friction effect. Robot. Comput. Integr. Manuf. 30(3), 315–325 (2014)

    Article  Google Scholar 

  26. Kalani, H., Rezaei, A., Akbarzadeh, A.: Improved general solution for the dynamic modeling of Gough–Stewart platform based on principle of virtual work. Nonlinear Dyn. 83(4), 2393–2418 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  27. Xin, G., Deng, H., Zhong, G.: Closed-form dynamics of a 3-DOF spatial parallel manipulator by combining the lagrangian formulation with the virtual work principle. Nonlinear Dyn. 86(2), 1329–1347 (2016)

    Article  Google Scholar 

  28. Dasgupta, B., Choudhury, P.: A general strategy based on the Newton–Euler approach for the dynamic formulation of parallel manipulators. Mech. Mach. Theory 34(6), 801–824 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  29. Dasgupta, B., Mruthyunjaya, T.: A Newton–Euler formulation for the inverse dynamics of the stewart platform manipulator. Mech. Mach. Theory 33(8), 1135–1152 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  30. Khalil, W., Guegan, S.: Inverse and direct dynamic modeling of Gough–Stewart robots. IEEE Trans. Robot. 20(4), 754–761 (2004)

    Article  Google Scholar 

  31. Khalil, W., Ibrahim, O.: General solution for the dynamic modeling of parallel robots. J. Intell. Robot. Syst. 49(1), 19–37 (2007)

    Article  Google Scholar 

  32. Wang, H., Chen, G., Lin, Z.: Forward dynamics analysis of the 6-PUS mechanism based on platform-legs composite simulation. Chin. J. Mech. Eng. 22(4), 496–504 (2009)

    Article  Google Scholar 

  33. Chen, G., Wang, H., Lin, Z.: Forward dynamics of the 6-U PS parallel manipulator based on the force coupling and geometry constraint of the passive joints. J. Syst. Des. Dyn. 5(3), 416–428 (2011)

    Google Scholar 

  34. Carvalho, J., Ceccarelli, M.: A closed-form formulation for the inverse dynamics of a Cassino parallel manipulator. Multibody Syst. Dyn. 5(2), 185–210 (2001)

    Article  MATH  Google Scholar 

  35. Shiau, T., Tsai, Y., Tsai, M.: Nonlinear dynamic analysis of a parallel mechanism with consideration of joint effects. Mech. Mach. Theory 43(4), 491–505 (2008)

    Article  MATH  Google Scholar 

  36. Carricato, M., Gosselin, C.: On the modeling of leg constraints in the dynamic analysis of Gough/Stewart-type platforms. J. Comput. Nonlinear Dyn. 4(1), 011008 (2009)

    Article  Google Scholar 

  37. Wang, Z., Zhang, N., Chai, X., Li, Q.: Kinematic/dynamic analysis and optimization of a 2-URR-RRU parallel manipulator. Nonlinear Dyn. 88(1), 503–519 (2017)

    Article  Google Scholar 

  38. Gallardo, J., Rico, J., Frisoli, A., Checcacci, D., Bergamasco, M.: Dynamics of parallel manipulators by means of screw theory. Mech. Mach. Theory 38(11), 1113–1131 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  39. Liu, M., Li, C., Li, C.: Dynamics analysis of the Gough–Stewart platform manipulator. IEEE Trans. Robot. Autom. 16(1), 94–98 (2000)

    Article  Google Scholar 

  40. Cheng, G., Shan, X.: Dynamics analysis of a parallel hip joint simulator with four degree of freedoms (3R1T). Nonlinear Dyn. 70(4), 2475–2486 (2012)

    Article  MathSciNet  Google Scholar 

  41. Liu, G., Li, Z.: A unified geometric approach to modeling and control of constrained mechanical systems. IEEE Trans. Robot. Autom. 18(4), 574–587 (2002)

    Article  Google Scholar 

  42. Müller, A., Maisser, P.: A Lie-group formulation of kinematics and dynamics of constrained MBS and its application to analytical mechanics. Multibody Syst. Dyn. 9(4), 311–352 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  43. Miller, K.: Optimal design and modeling of spatial parallel manipulators. Int. J. Robot. Res. 23(2), 127–140 (2004)

    Article  Google Scholar 

  44. Mendes, A., Almeida, F.: The generalized momentum approach to the dynamic modeling of a 6-dof parallel manipulator. Multibody Syst. Dyn. 21(2), 123–146 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  45. Yin, C., Chen, Y., Zhong, S.: Fractional-order sliding mode based extremum seeking control of a class of nonlinear systems. Automatica 50(12), 3173–3181 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  46. Yin, C., Cheng, Y., Chen, Y., Stark, B., Zhong, S.: Adaptive fractional-order switching-type control method design for 3D fractional-order nonlinear systems. Nonlinear Dyn. 82(1), 39–52 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  47. Yin, C., Dadras, S., Huang, X., Mei, J., Malek, H., Cheng, Y.: Energy-saving control strategy for lighting system based on multivariate extremum seeking with newton algorithm. Energy Convers. Manage. 142, 504–522 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported in part by the Natural Science Foundation of China under Grant Nos. 51505279 and 51525504 and by the National Basic Research Program of China under Grant No. 2014CB046600.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Genliang Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, G., Yu, W., Li, Q. et al. Dynamic modeling and performance analysis of the 3-PRRU 1T2R parallel manipulator without parasitic motion. Nonlinear Dyn 90, 339–353 (2017). https://doi.org/10.1007/s11071-017-3665-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3665-0

Keywords

Navigation