Skip to main content
Log in

A novel secure communication scheme based on the Karhunen–Loéve decomposition and the synchronization of hyperchaotic Lü systems

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper proposes a novel secure communication scheme based on the Karhunen–Loéve decomposition and the synchronization of a master and a slave hyperchaotic Lü systems. First, the Karhunen–Loéve decomposition is used as a data reduction tool to generate data coefficients and eigenfunctions that capture the essence of grayscale and color images in an optimal manner. It is noted that the original images can be reproduced using only the most energetic eigenfunctions; this results in computational savings. The data coefficients are encrypted and transmitted using a master hyperchaotic Lü system. These coefficients are then recovered at the receiver end using a sliding mode controller to synchronize two hyperchaotic Lü systems. Simulation results are presented to illustrate the ability of the proposed control law to synchronize the master and slave hyperchaotic Lü systems. Moreover, the original images are recovered by using the decrypted data coefficients in conjunction with the eigenfunctions of the image. Computer simulation results are provided to show the excellent performance of the proposed scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Ott, E., Grebogi, C., York, J.A.: Controlling chaos. Phys. Rev. Lett. 64, 1196–1199 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  2. Pecora, L.M., Carroll, T.L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64, 821–824 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  3. Wu, C.W., Chua, L.O.: A simple way to synchronize chaotic systems with applications to secure communication systems. Int. J. Bifurc. Chaos 3(6), 1619–1627 (1993)

    Article  MATH  Google Scholar 

  4. Yang, T., Chua, L.O.: Secure communication via chaotic parameter modulation. IEEE Trans. Circuits Syst. 43(9), 817–819 (1996)

    Article  Google Scholar 

  5. Lu, J., Cao, J.: Adaptive complete synchronization of two identical or different chaotic (hyperchaotic) systems with fully unknown parameters. Chaos interdiscip. J. Nonlinear Sci. 15(4), 043901 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Park, J.H.: Adaptive synchronization of hyperchaotic Chen system with uncertain parameters. Chaos Solitons Fractals 26(3), 959–964 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Wang, X.Y., Song, J.M.: Synchronization of the fractional order hyperchaos Lorenz systems with activation feedback control. Commun. Nonlinear Sci. Numer. Simul. 14(8), 3351–3357 (2009)

    Article  MATH  Google Scholar 

  8. Wang, X., He, Y.: Projective synchronization of fractional order chaotic system based on linear separation. Phys. Lett. A 372(4), 435–441 (2008)

    Article  MATH  Google Scholar 

  9. Wang, X.Y., Wang, M.J.: Dynamic analysis of the fractional-order Liu system and its synchronization. Chaos Interdiscip. J. Nonlinear Sci. 17(3), 033106 (2007)

    Article  MATH  Google Scholar 

  10. Chen, A., Lu, J., Lü, J., Yu, S.: Generating hyperchaotic Lü attractor via state feedback control. Phys. A 364, 103–110 (2006)

    Article  Google Scholar 

  11. Smaoui, N., Karouma, A., Zribi, M.: Secure communications based on the synchronization of the hyperchaotic Chen and the unified chaotic systems. Commun. Nonlinear Sci. Numer. Simul. 16(8), 3279–3293 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cho, S.J., Jin, M., Kuc, T.Y., Lee, J.S.: Control and synchronization of chaos systems using time-delay estimation and supervising switching control. Nonlinear Dyn. 75(3), 549–560 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Wang, Z.P., Wu, H.N.: Synchronization of chaotic systems using fuzzy impulsive control. Nonlinear Dyn. 78(1), 729–742 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cho, S.-J., Jin, M., Kuc, T.-Y., Lee, J.S.: Control and synchronization of chaos systems using time-delay estimation and supervising switching control. Nonlinear Dyn. 75(3), 549–560 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Liu, D., Wu, Z., Ye, Q.: Adaptive impulsive synchronization of uncertain drive-response complex-variable chaotic systems. Nonlinear Dyn. 75(1–2), 209–216 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Yang, T.: A survey of chaotic secure communication systems. Int. J. Comput. Cognit. 2(2), 81–130 (2004)

    Google Scholar 

  17. Tran, X.T., Kang, H.J.: Robust adaptive chatter-free finite-time control method for chaos control and (anti-)synchronization of uncertain (hyper)chaotic systems. Nonlinear Dyn. 80(1–2), 637–651 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Liu, L., Ding, W., Liu, C., Ji, H., Cao, C.: Hyperchaos synchronization of fractional-order arbitrary dimensional dynamical systems via modified sliding mode control. Nonlinear Dyn. 76(4), 2059–2071 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Yang, L.B., Yang, T.: Synchronization of Chua’s circuits with parameter mismatching using adaptive model-following control. Chin. J. Electron. 6(1), 90–96 (1997)

    Google Scholar 

  20. Wu, X., Zhang, H.: Synchronization of two hyperchaotic systems via adaptive control. Chaos Solitons Fractals 39(5), 2268–2273 (2009)

    Article  MATH  Google Scholar 

  21. Zribi, M., Smaoui, N., Salim, H.J.: Synchronization of the unified chaotic systems using a sliding mode controller. Chaos Solitons Fractals 42(5), 3197–3209 (2009)

    Article  MATH  Google Scholar 

  22. Li, Y., Tang, W.K.S., Chen, G.: Generating hyperchaos via state feedback control. Int. J. Bifurc. Chaos 15(10), 3367–3376 (2005)

    Article  Google Scholar 

  23. Tao, C., Liu, X.: Feedback and adaptive control and synchronization of a set of chaotic and hyperchaotic systems. Chaos Solitons Fractals 32(4), 1572–1581 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kokotović, P.V.: The joy of feedback: nonlinear and adaptive. IEEE Control Syst. Mag. 12(3), 7–17 (1992)

    Article  Google Scholar 

  25. Hu, J., Chen, S., Chen, L.: Adaptive control for anti-synchronization of Chua’s chaotic system. Phys. Lett. A 39(6), 455–460 (2005)

    Article  MATH  Google Scholar 

  26. Yassen, M.T.: Adaptive synchronization of two different uncertain chaotic systems. Phys. Lett. A. 337(4–6), 335–341 (2005)

    Article  MATH  Google Scholar 

  27. Shao, S., Chen, M., Yan, X.: Adaptive sliding mode synchronization for a class of fractional-order chaotic systems with disturbance. Nonlinear Dyn. 83(4), 1855–1866 (2015)

  28. Jia, Q.: Adaptive control and synchronization of a new hyperchaotic system with unknown parameters. Phys. Lett. A 362, 424–429 (2007)

    Article  MATH  Google Scholar 

  29. Carrol, T.L., Pecora, L.M.: Synchronizing chaotic circuits. IEEE Trans. Circuits Syst. 38(4), 453–456 (1991)

    Article  Google Scholar 

  30. Zhang, H., Huang, W., Wang, Z., Chai, T.: Adaptive synchronization between two different chaotic systems with unknown parameters. Phys. Lett. A. 350, 363–366 (2006)

    Article  MATH  Google Scholar 

  31. Rafique, M.A., Rehan, M., Siddique, M.: Adaptive mechanism for synchronization of chaotic oscillators with interval time-delays. Nonlinear Dyn. 81(1–2), 495–509 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  32. Vargas, J.A., Grzeidak, E., Hemerly, E.M.: Robust adaptive synchronization of a hyperchaotic finance system. Nonlinear Dyn. 80(1–2), 239–248 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  33. Xiao, M., Cao, J.: Synchronization of a chaotic electronic circuit system with cubic term via adaptive feedback control. Commun. Nonlinear Sci. Numer. Simul. 14(8), 3379–3388 (2009)

    Article  MATH  Google Scholar 

  34. Liu, L., Pu, J., Song, X., Fu, Z., Wang, X.: Adaptive sliding mode control of uncertain chaotic systems with input nonlinearity. Nonlinear Dyn. 76(4), 1857–1865 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  35. Wang, X.Y., Wang, M.J.: A chaotic secure communication scheme based on observer. Commun. Nonlinear Sci. Numer. Simul. 14(4), 1502–1508 (2009)

    Article  Google Scholar 

  36. Wang, X., Luo, C.: Hybrid modulus-phase synchronization of hyperchaotic complex systems and its application to secure communication. Int. J. Nonlinear Sci. Numer. Simul. 14(7–8), 533–542 (2013)

    Google Scholar 

  37. Pano-Azucena, A.D., de Jesus Rangel-Magdaleno, J., Tlelo-Cuautle, E., de Jesus Quintas-Valles, A.: Arduino-based chaotic secure communication system using multi-directional multi-scroll chaotic oscillators. Nonlinear Dyn. 87(4), 2203–2217 (2017)

    Article  Google Scholar 

  38. Lin, Z., Yu, S., Li, C., L., J., Wang, Q.: Design and smartphone-based implementation of a chaotic video communication scheme via WAN remote transmission. Int. J. Bifurc. Chaos 26(09), 1650158 (2016)

    Article  MathSciNet  Google Scholar 

  39. Chen, P., Yu, S., Zhang, X., He, J., Lin, Z., Li, C.: L, J.: ARM-embedded implementation of a video chaotic secure communication via WAN remote transmission with desirable security and frame rate. Nonlinear Dyn. 86(2), 725–740 (2016)

    Article  Google Scholar 

  40. Utkin, V.: Sliding mode control. Control Syst. Robot. Autom. Vol. XIII Nonlinear Distrib. Time Delay Syst. II. 130 (2009)

  41. Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141 (1963)

    Article  Google Scholar 

  42. Lumley, J.L.: The structure of inhomogeneous turbulent flows. In: Yaglom, A.M., Tatarski, V.I. (eds.) Atmospheric Turbulence and Radio Wave Propagation, pp. 166–178. Nauka, Moskow (1967)

    Google Scholar 

  43. Gonzalez, R.C., Wintz, P.: Digital Image Processing. Addison Wesley, Reading (1987)

    MATH  Google Scholar 

  44. Hoteling, H.: Analysis of complex statistical variables in principal components. J. Exp. Psychol. 24, 417 (1953)

    Google Scholar 

  45. Harman, H.: Modern Factor Analysis. University of Chicago Press, Chicago (1960)

    MATH  Google Scholar 

  46. Brooks, C.L., Karplus, M., Pettitt, B.M.: Proteins: A Theoretical Perspective of Dynamics, Structure and Thermodynamics. Wiley Publishing Co., New York (1988)

    Google Scholar 

  47. Smaoui, N.: Linear versus nonlinear dimensionality reduction of high-dimensional dynamical systems. SIAM J. Sci. Comput. 25(6), 2107–2125 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  48. Sirovich, L.: Turbulence and the dynamics of coherent structures, part I: coherent structures. Q. Appl. Math. XLV, 561–571 (1987)

    Article  MATH  Google Scholar 

  49. Smaoui, N.: Artificial neural network-based low-dimensional model for spatio-temporally varying cellular flames. Appl. Math. Model. 21, 739–748 (1997)

    Article  MATH  Google Scholar 

  50. Wu, C.W., Chua, L.O.: A simple way to synchronize chaotic systems with applications to secure communication systems. Int. J. Bifurc. Chaos 3(06), 1619–1627 (1993)

    Article  MATH  Google Scholar 

  51. Kocarev, Lj, Halle, K.S., Eckert, K., Chua, L.O., Parlitz, U.: Experimental demonstration of secure communications via chaotic synchronization. Int. J. Bifurc. Chaos 2(03), 709–713 (1992)

    Article  MATH  Google Scholar 

  52. Wang, X.Y., Gao, Y.F.: A switch-modulated method for chaos digital secure communication based on user-defined protocol. Commun. Nonlinear Sci. Numer. Simul. 15(1), 99–104 (2010)

    Article  Google Scholar 

  53. Liu, H., Wang, X., Zhu, Q.: Asynchronous anti-noise hyper chaotic secure communication system based on dynamic delay and state variables switching. Phys. Lett. A 375(30), 2828–2835 (2011)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nejib Smaoui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smaoui, N., Zribi, M. & Elmokadem, T. A novel secure communication scheme based on the Karhunen–Loéve decomposition and the synchronization of hyperchaotic Lü systems. Nonlinear Dyn 90, 271–285 (2017). https://doi.org/10.1007/s11071-017-3660-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3660-5

Keywords

Navigation