Skip to main content
Log in

Pull-in instability of a typical electrostatic MEMS resonator and its control by delayed feedback

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Pull-in instability of the electrostatic microstructures is a common undesirable phenomenon which implies the loss of reliability of micro-electromechanical systems. Therefore, it is necessary to understand its mechanism and then reduce the phenomenon. In this work, pull-in instability of a typical electrostatic MEMS resonator is discussed in detail. Delayed position feedback and delayed velocity feedback are introduced to suppress pull-in instability, respectively. The thresholds of AC voltage for pull-in instability in the initial system and the controlled systems are obtained analytically by the Melnikov method. The theoretical predictions are in good agreement with the numerical results. It follows that pull-in instability of the MEMS resonator can be ascribed to the homoclinic bifurcation inducing by the AC and DC load. Furthermore, it is found that the controllers are both good strategies to reduce pull-in instability when their gains are positive. The delayed position feedback controller can work well only when the delay is very short and AC voltage is low, while the delayed velocity feedback will be effective under a much higher AC voltage and a wider delay range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Younis, M.I.: MEMS Linear and Nonlinear Statics and Dynamics. Springer, New York (2011)

    Book  Google Scholar 

  2. Zhang, W.M., Yan, H., Peng, Z.K., Meng, G.: Electrostatic pull-in instability in MEMS/NEMS: a review. Sens. Actuators A Phys. 214(4), 187–218 (2014)

    Article  Google Scholar 

  3. Arkan, E.F., Sacchetto, D., Yildiz, I., Leblebici, Y., Alaca, B.E.: Monolithic integration of Si nanowires with metallic electrodes: NEMS resonator and switch applications. J. Micromech. Microeng. 21(12), 125018 (2011)

    Article  Google Scholar 

  4. Loh, O.Y., Espinosa, H.D.: Nanoelectromechanical contact switches. Nat. Nanotechnol. 7(5), 283–295 (2012)

    Article  Google Scholar 

  5. Nayfeh, A.H., Younis, M.I., Abdel-Rahman, E.M.: Dynamic pull-in phenomenon in MEMS resonators. Nonlinear Dyn. 48(1–2), 153–163 (2007)

    Article  MATH  Google Scholar 

  6. Ruzziconi, L., Ramini, A.H., Younis, M.I., Lenci, S.: Theoretical prediction of experimental jump and pull-in dynamics in a MEMS sensor. Sensors 14(9), 17089–17111 (2014)

    Article  Google Scholar 

  7. Rega, G., Settimi, V.: Bifurcation, response scenarios and dynamic integrity in a single-mode model of noncontact atomic force microscopy. Nonlinear Dyn. 73(1), 101–123 (2013)

    Article  MathSciNet  Google Scholar 

  8. Rokni, H., Lu, W.: A continuum model for the static pull-in behavior of graphene nanoribbon electrostatic actuators with interlayer shear and surface energy effects. J. Appl. Phys. 113(15), 153512 (2013)

    Article  Google Scholar 

  9. Das, K., Batra, R.C.: Pull-in and snap-through instabilities in transient deformations of microelectromechanical systems. J. Micromech. Microeng. 19(3), 035008 (2009)

    Article  Google Scholar 

  10. Elata, D., Bamberger, H.: On the dynamic pull-in of electrostatic actuators with multiple degrees of freedom and multiple voltage sources. J. Microelectromech. Syst. 15(1), 131–140 (2013)

    Article  Google Scholar 

  11. Sedighi, H.M., Changizian, M., Noghrehabadi, A.: Dynamic pull-in instability of geometrically nonlinear actuated micro-beams based on the modified couple stress theory. Lat. Am. J. Solids Struct. 11(5), 810–825 (2014)

    Article  Google Scholar 

  12. Rega, G., Lenci, S.: Dynamical integrity and control of nonlinear mechanical oscillators. J. Vib. Control 14(1–2), 159–179 (2008)

    Article  MATH  Google Scholar 

  13. Liu, Y., Hu, A., Han, F., Lu, Y.: Stability analysis of nonlinear ship-roll dynamics under wind and wave. Chaos Solitons Fractals 76, 32–39 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lenci, S., Rega, G.: Control of pull-in dynamics in a nonlinear thermoelastic electrically actuated microbeam. J. Micromech. Microeng. 16(2), 390–401 (2006)

    Article  Google Scholar 

  15. Ruzziconi, L., Younis, M.I., Lenci, S.: An efficient reduced-order model to investigate the behavior of an inperfect microbeam under axial load and electric excitation. J. Comput. Nonlinear Dyn. 8(1), 011014 (2013)

    Article  Google Scholar 

  16. Zhu, Z.W., Li, X.M., Xu, J.: Bifurcation characteristics and safe basin of MSMA microgripper subjected to stochastic excitation. AIP Adv. 5(2), 027124 (2015)

    Article  Google Scholar 

  17. Alsaleem, F.M., Younis, M.I., Ouakad, H.M.: On the nonlinear resonances and dynamic pull-in of electrostatically actuated resonators. J. Micromech. Microeng. 19(4), 045013 (2009)

  18. Alsaleem, F.M., Younis, M.I., Ruzziconi, L.: An experimental and theoretical investigation of dynamic pull-in in MEMS resonators actuated electrostatically. J. Microelectromech. Syst. 19(4), 794–806 (2010)

    Article  Google Scholar 

  19. Rocha, L.A., Cretu, E., Wolffenbuttel, R.F.: Using dynamic voltage drive in a parallel-plate electrostatic actuators for full-gap travel range and positioning. J. Microelectromech. Syst. 15(1), 69–83 (2006)

    Article  Google Scholar 

  20. Shirazi, F.A., Velni, J.M., Grigoriadis, K.M.: An LPV design approach for voltage control of an electrostatic MEMS actuator. J. Microelectromech. Syst. 20(1), 302–311 (2011)

    Article  Google Scholar 

  21. Nbendjo, B.R.N., Woafo, P.: Active control with delay of horseshoes chaos using piezoelectric absorber on a buckled beam under parametric excitation. Chaos Solitons Fractals 32(1), 73–79 (2007)

    Article  Google Scholar 

  22. Kirrou, I., Belhaq, M.: Control of bistability in non-contact mode atomic force microscopy using modulated time delay. Nonlinear Dyn. 81(1–2), 607–619 (2015)

    Article  Google Scholar 

  23. Shang, H., Xu, J.: Delayed feedbacks to control the fractal erosion of safe basins in a parametrically excited system. Chaos Solitons Fractals 41(4), 1880–1896 (2009)

    Article  Google Scholar 

  24. Shang, H., Wen, Y.: Fractal erosion of the safe basin in a Helmholtz oscillator and its control by linear delayed velocity feedback. Chin. Phys. Lett. 28(11), 110503 (2011)

    Article  Google Scholar 

  25. Alsaleem, F.M., Younis, M.I.: Stabilization of electrostatic MEMS resonators using a delayed feedback controller. Smart Mater. Struct. 19(3), 035016 (2010)

    Article  Google Scholar 

  26. Shao, S., Masri, K.M., Younis, M.I.: The effect of time-delay feedback controller on an electrically actuated resonator. Nonlinear Dyn. 74(1–2), 257–270 (2013)

    Article  MATH  Google Scholar 

  27. Masri, K.M., Shao, S., Younis, M.I.: Delayed feedback controller for microelectromechanical systems resonators undergoing large motion. J. Vib. Control 21(13), 2604–2615 (2015)

    Article  Google Scholar 

  28. Cao, Y.Y., Chung, K.W., Xu, J.: A novel construction of homoclinic and heteroclinic orbits in nonlinear oscillators by a perturbation-incremental method. Nonlinear Dyn. 64(3), 221–236 (2011)

    Article  MathSciNet  Google Scholar 

  29. Haghighi, H.S., Markazi, A.H.D.: Chaos prediction and control in MEMS resonators. Commun. Nonlinear Sci. Numer. Simul. 15(10), 3091–3099 (2010)

    Article  Google Scholar 

  30. Siewe, M.S., Hegazy, U.H.: Homoclinic bifurcation and chaos control in MEMS resonators. Appl. Math. Model. 35(12), 5533–5552 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work has been totally developed during the author’s stay at University of Michigan in Ann Arbor. The author gratefully acknowledges the help and fruitful discussions of Professor Gabor Orosz. This work was supported by the National Natural Science Foundation of China under Grant No. 11472176.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huilin Shang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shang, H. Pull-in instability of a typical electrostatic MEMS resonator and its control by delayed feedback. Nonlinear Dyn 90, 171–183 (2017). https://doi.org/10.1007/s11071-017-3653-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3653-4

Keywords

Navigation