Skip to main content
Log in

Control of three-dimensional incompressible hyperelastic beams

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The problem of control of three-dimensional incompressible hyperelastic cantilever beams is approached from an analytical dynamics perspective. The dynamic equations of motion of the hyperelastic beam are derived using the absolute nodal coordinate formulation, which is a finite element method that accurately describes large-deformation and large-rotation nonlinear motion in structures. The fully parameterized classical ANCF element is used to characterize the displacement field of each finite element in the beam. Nonlinear constitutive models (such as the near-incompressible neo-Hookean material model) are used to describe the rubber-like behavior of the beam. Control of such a hyperelastic beam is approached using the theory of constrained motion, where the control objectives are reformulated as constraints that are imposed on the continuum. The fundamental equation of mechanics is employed to obtain the explicit generalized nonlinear control forces in closed form, which are applied at the nodes of the beam in order to achieve the desired control objectives. No linearizations and/or approximations are made in the dynamics of the nonlinear continuum, and no a priori structure is imposed on the nature of the nonlinear controller. Four numerical simulations demonstrating the control of a highly flexible 30-element hyperelastic cantilever beam are presented to show the efficacy of the control methodology in achieving the desired control objectives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Ako, H.: Flutter control system for aircraft wings (1992). US Patent 5,135,186

  2. Bonet, J., Wood, R.D.: Nonlinear continuum mechanics for finite element analysis. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  3. Cho, H., Udwadia, F.E.: Explicit control force and torque determination for satellite formation-keeping with attitude requirements. J. Guid. Control Dyn. 36(2), 589–605 (2013)

    Article  Google Scholar 

  4. Çimen, T.: State-dependent Riccati equation (SDRE) control: a survey. In: Proceedings of the 17th World Congress, IFAC, Seoul, Korea, July 6–11 (2008)

  5. Hall II, E.K., Mueller, J.T.: Coupled vibration isolation/suppression system for space applications: aspects of structural design. In: Smart Structures and Materials’ 95, pp. 136–144. International Society for Optics and Photonics (1995)

  6. Holzapfel, G.A.: Nonlinear Solid Mechanics, vol. 24. Wiley, Chichester (2000)

  7. Krstic, M., Kanellakopoulos, I., Kokotovic, P.V.: Nonlinear and Adaptive Control Design. Wiley, New York (1995)

    MATH  Google Scholar 

  8. Maqueda, L.G., Shabana, A.A.: Poisson modes and general nonlinear constitutive models in the large displacement analysis of beams. Multibody Syst. Dyn. 18(3), 375–396 (2007)

    Article  MATH  Google Scholar 

  9. Marchese, A.D., Komorowski, K., Onal, C.D., Rus, D.: Design and control of a soft and continuously deformable 2d robotic manipulation system. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 2189–2196. IEEE (2014)

  10. Mylapilli, H.: Constrained motion approach to the synchronization of the multiple coupled slave gyroscopes. J. Aerosp. Eng. 26(4), 814–828 (2013). doi:10.1061/(ASCE)AS.1943-5525.0000192

    Article  Google Scholar 

  11. Mylapilli, H.: An analytical dynamics approach to the control of mechanical systems. Ph.D. Thesis, University of Southern California (2015)

  12. Orzechowski, G., Fraczek, J.: Nearly incompressible nonlinear material models in the large deformation analysis of beams using ANCF. Nonlinear Dyn. 82(1–2), 451–464 (2015)

    Article  MathSciNet  Google Scholar 

  13. Pappalardo, C.M.: A natural absolute coordinate formulation for the kinematic and dynamic analysis of rigid multibody systems. Nonlinear Dyn. 81(4), 1841–1869 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Peters, J., Mistry, M., Udwadia, F., Nakanishi, J., Schaal, S.: A unifying framework for robot control with redundant DOFs. Auton. Robots 24(1), 1–12 (2008)

    Article  Google Scholar 

  15. Rus, D., Tolley, M.T.: Design, fabrication and control of soft robots. Nature 521(7553), 467–475 (2015)

    Article  Google Scholar 

  16. Schutte, A.D., Udwadia, F.E., Lam, T.: Nonlinear dynamics and control of a dumbbell spacecraft system. In: Earth & Space 2008@ sEngineering, Science, Construction, and Operations in Challenging Environments, pp. 1–14. ASCE (2008)

  17. Shabana, A.A.: Computational Continuum Mechanics. Cambridge University Press, New York (2011)

    Book  MATH  Google Scholar 

  18. Shabana, A.A., Yakoub, R.Y.: Three dimensional absolute nodal coordinate formulation for beam elements: theory. J. Mech. Des. 123(4), 606–613 (2001)

    Article  Google Scholar 

  19. Song, O., Librescu, L., Rogers, C.: Application of adaptive technology to static aeroelastic control of wing structures. AIAA J. 30(12), 2882–2889 (1992)

    Article  MATH  Google Scholar 

  20. Sontag, E.: Mathematical Theory of Control: Deterministic Finite Dimensional Systems. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  21. Udwadia, F.E.: A new perspective on the tracking control of nonlinear structural and mechanical systems. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 459(2035), 1783–1800 (2003)

    MathSciNet  MATH  Google Scholar 

  22. Udwadia, F.E.: Optimal tracking control of nonlinear dynamical systems. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 464(2097), 2341–2363 (2008)

    MathSciNet  Google Scholar 

  23. Udwadia, F.E., Kalaba, R.E.: A new perspective on constrained motion. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 439, 407–410 (1992)

    Google Scholar 

  24. Udwadia, F.E., Kalaba, R.E.: On motion. J. Frankl. Inst. 330(3), 571–577 (1993)

    Article  MATH  Google Scholar 

  25. Udwadia, F.E., Kalaba, R.E.: Analytical Dynamics: A New Approach. Cambridge University Press, Cambridge (1996). doi:10.1017/cbo9780511665479

  26. Udwadia, F.E., Koganti, P.B.: Optimal stable control for nonlinear dynamical systems: an analytical dynamics based approach. Nonlinear Dyn. 82(1–2), 547–562 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Udwadia, F.E., Koganti, P.B., Wanichanon, T., Stipanović, D.M.: Decentralised control of nonlinear dynamical systems. Int. J. Control 87(4), 827–843 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Udwadia, F.E., Mylapilli, H.: Energy control of inhomogeneous nonlinear lattices. Proc. R. Soc. A 471(2176), 20140694 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. Udwadia, F.E., Mylapilli, H.: Energy control of nonhomogeneous Toda lattices. Nonlinear Dyn. 81(3), 1355–1380 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. Udwadia, F.E., Mylapilli, H.: Constrained motion of mechanical systems and tracking control of nonlinear systems: connections and closed-form results. Nonlinear Dyn. Syst. Theory 15(1), 73–89 (2015)

    MathSciNet  MATH  Google Scholar 

  31. Udwadia, F.E., Schutte, A.D.: An alternative derivation of the quaternion equations of motion for rigid-body rotational dynamics. J. Appl. Mech. 77(4), 044505 (2010)

    Article  Google Scholar 

  32. Udwadia, F.E., Schutte, A.D.: A unified approach to rigid body rotational dynamics and control. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 468, 395–414 (2012)

    Google Scholar 

  33. Udwadia, F.E., Wanichanon, T.: Control of uncertain nonlinear multibody mechanical systems. J. Appl. Mech. 81(4), 041020 (2014)

    Article  Google Scholar 

  34. Winter, D.A.: Biomechanics and Motor Control of Human Movement. Wiley, New York (2009)

    Book  Google Scholar 

  35. Yakoub, R.Y., Shabana, A.A.: Three dimensional absolute nodal coordinate formulation for beam elements: implementation and applications. J. Mech. Des. 123(4), 614–621 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harshavardhan Mylapilli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mylapilli, H., Udwadia, F.E. Control of three-dimensional incompressible hyperelastic beams. Nonlinear Dyn 90, 115–135 (2017). https://doi.org/10.1007/s11071-017-3651-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3651-6

Keywords

Navigation