Abstract
A periodically breather solitary wave and some lump solutions are obtained via using Hirota’s bilinear method, homoclinic test approach and parameter perturbation technique for the (1 + 1)-dimensional Benjamin–Ono equation. Spatiotemporal dynamics of lump solution is investigated and discussed by choice of some parameters \(u_{0}, \beta ,\) and \(\gamma \). Finally, spatiotemporal structure of lump solution is analyzed using the extreme value theory of multivariable function.
This is a preview of subscription content, access via your institution.



References
Zaharov, V.E.: Exact solutions in the problem of parametric interaction of three-dimensional wave packets. Doklady Akademii Nauk Sssr. 228, 1314–1316 (1976)
Craik, A.D.D., Adam, J.A.: Evolution in space and time of resonant wave triads. I. The ‘Pump-Wave Approximation’. Proc. R. Soc. A. 363, 243–255 (1978)
Ma, H.C., Deng, A.P.: Lump solution of (2+1)-dimensional Boussinesq equation. Commun. Theor. Phys. 65, 546–552 (2016)
Ma, W.X.: Lump solutions to the Kadomtsev–Petviashvili equation. Phys. Lett. A. 379, 197–1978 (2015)
Wang, C.J.: Spatiotemporal deformation of lump solution to (2 + 1)-dimensional KdV equation. Nonlinear Dyn. 84, 697–702 (2015)
Wang, C.J., Dai, Z., Liu, C.: Interaction between kink solitary wave and rogue wave for (2 + 1)-dimensional Burgers equation. Mediterr. J. Math. 13, 1087–1098 (2016)
Xu, Z., Chen, H., Jiang, M.: Resonance and deflection of multi-soliton to the (2 + 1)-dimensional Kadomtsev–Petviashvili equation. Nonlinear Dyn. 78, 461–466 (2014)
Darvishi, M.T., Kavitha, L., Najafi, M.: Elastic collision of mobile solitons of a (3 + 1)-dimensional soliton equation. Nonlinear Dyn. 86, 765–778 (2016)
Liu, J., Mu, G., Dai, Z.D.: Spatiotemporal deformation of multi-soliton to (2 + 1)-dimensional KdV equation. Nonlinear Dyn. 83, 355–360 (2015)
Leblond, H., Kremer, D., Mihalache, D.: Ultrashort spatiotemporal optical solitons in quadratic nonlinear media: generation of line and lump solitons from few-cycle input pulses. Phys. Rev. A 80, 72–72 (2011)
Minzoni, A.A., Smyth, N.F.: Evolution of lump solutions for the KP equation. Wave Motion 24, 291–305 (1996)
Benjamin, T.B.: Internal waves of permanent form in fluids of great depth. J. Fluid Mech. 29, 559–562 (1967)
Ono, H.: Algebraic solitary waves in stratified fluids. J. Phys. Soc. Jpn. 39, 1082–1091 (1975)
Xu, Z.H., Xian, D.Q., Chen, H.L.: New periodic solitary-wave solutions for the Benjiamin–Ono equation. Appl. Math. Comput. 215, 4439–4442 (2010)
Fu, Z., Liu, S., Liu, S.: The JEFE method and periodic solutions of two kinds of nonlinear wave equations. Commun. Nonlinear Sci. Numer. Simul. 8, 67–75 (2003)
Wang, Z., Li, D.S., Lu, H.F., Zhang, H.Q.: A method for constructing exact solutions and application to Benjamin–Ono equation. Chin. Phys. 14, 2158–2163 (2005)
Meng, X.H.: The solitary waves solutions of the internal wave Benjamin–Ono Equation. J. Appl. Math. Phys. 02, 807–812 (2014)
Li, S., Chen, W., Xu, Z., Chen, H.: Rogue wave for the Benjamin–Ono equation. Adv. Pure Math. 05, 82–87 (2015)
Tan, W., Dai, Z.: Dynamics of kinky wave for (3 + 1)-dimensional potential Yu–Toda–Sasa–Fukuyama equation. Nonlinear Dyn. 85, 817–823 (2016)
Wazwaz, A.M.: (2 + 1)-dimensional Burgers equations BE(m + n + 1): using the recursion operator. Appl. Math. Comput. 219, 9057–9068 (2013)
Darvishi, M.T., Najafi, M.: A modification of extended homoclinic test approach to solve the (3 + 1)-dimensional potential-YTSF equation. Chin. Phys. Lett. 28, 40202–40205 (2011)
Dai, Z.D., Huang, J., Jiang, M.: Homoclinic orbits and periodic solitons for Boussinesq equation with even constraint. Chaos Solitons Fract. 26, 1189–1194 (2005)
Author information
Authors and Affiliations
Corresponding author
Additional information
The work was supported by Scientific Research Project of Education Department of Hunan Province (No: 17C1297) and Jishou University Natural Science Foundation Grant No. Jd16010.
Rights and permissions
About this article
Cite this article
Tan, W., Dai, Z. Spatiotemporal dynamics of lump solution to the (1 + 1)-dimensional Benjamin–Ono equation. Nonlinear Dyn 89, 2723–2728 (2017). https://doi.org/10.1007/s11071-017-3620-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11071-017-3620-0
Keywords
- Benjamin–Ono equation
- Lump solution
- Spatiotemporal structure
- Parameter perturbation
- Hirota’s bilinear method