Advertisement

Nonlinear Dynamics

, Volume 92, Issue 2, pp 139–151 | Cite as

Optimal input design for hydrodynamic derivatives estimation of nonlinear dynamic model of AUV

  • Nowrouz Mohammad Nouri
  • Mehrdad Valadi
  • Jafar Asgharian
Original Paper
  • 165 Downloads

Abstract

Input design has a dominant role in developing the dynamic model of an autonomous underwater vehicle (AUV) through system identification. Optimal input design is the process of generating informative inputs that can be used to provide a good-quality dynamic model of AUV. In this paper, amplitude-modulated pseudo-random binary signal (APRBS) inputs are optimally designed in order to estimate the hydrodynamic derivatives of an AUV’s nonlinear dynamic model. The input controls are designed so as to minimize uncertainty in estimating hydrodynamic derivatives. The employed approach can design multiple inputs and apply constraints on an AUV system’s inputs and outputs. The genetic algorithm is utilized to solve the constraint optimization problem. The presented algorithm is used for designing the input signals of Hydrolab300 AUV, and the estimation obtained by these inputs is compared with that of zigzag maneuver. According to the results, the designed APRBS inputs improve the uncertainties that exist in estimating hydrodynamic derivatives better than zigzag inputs.

Keywords

Optimal input design System identification Nonlinear dynamic modeling Hydrodynamic derivatives AUV 

References

  1. 1.
    Sabet, M.T., Sarhadi, P., Zarini, M.: Extended and unscented Kalman filters for parameter estimation of an autonomous underwater vehicle. Ocean Eng. 91, 329–339 (2014)CrossRefGoogle Scholar
  2. 2.
    Martin, S.C., Whitcomb, L.L.: Experimental identification of six-degree-of-freedom coupled dynamic plant models for underwater robot vehicles. IEEE J. Ocean. Eng. 39(4), 662–671 (2014)CrossRefGoogle Scholar
  3. 3.
    Rentschler, M.E., Hover, F.S., Chryssostomidis, C.: System identification of open-loop maneuvers leads to improved AUV flight performance. IEEE J. Ocean. Eng. 31(1), 200–208 (2006)CrossRefGoogle Scholar
  4. 4.
    Jategaonkar, R.: Flight Vehicle System Identification: A Time Domain Methodology, vol. 216. AIAA, Reston (2006)CrossRefGoogle Scholar
  5. 5.
    Lu, L., Yao, B.: Experimental design for identification of nonlinear systems with bounded uncertainties. In: American Control Conference (ACC), 2010, pp. 4504-4509. IEEE (2010)Google Scholar
  6. 6.
    Morelli, E.A.: Flight test of optimal inputs and comparison with conventional inputs. J. Aircr. 36(2), 389–397 (1999)CrossRefGoogle Scholar
  7. 7.
    Mehra, R.K.: Optimal input signals for parameter estimation in dynamic systems-survey and new results. IEEE Trans. Automat. Contr. 19(6), 753–768 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Jauberthie, C., Chanthery, E.: Optimal input design for a nonlinear dynamical uncertain aerospace system. In: Proceedings of the 9th IFAC Symposium on Nonlinear Control Systems, Toulouse, France (2013)Google Scholar
  9. 9.
    Vincent, T.L., Novara, C., Hsu, K., Poolla, K.: Input design for structured nonlinear system identification. Automatica 46(6), 990–998 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Deflorian, M., Zaglauer, S.: Design of experiments for nonlinear dynamic system identification. In: 18th IFAC World Congress, Milano, Italy, pp. 13179–13184 (2011)Google Scholar
  11. 11.
    Gevers, M., Bombois, X., Hildebrand, R., Solari, G.: Optimal experiment design for open and closed-loop system identification. Commun. Inf. Syst. 11(3), 197 (2011)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Valenzuela, P.E., Rojas, C.R., Hjalmarsson, H.: A graph theoretical approach to input design for identification of nonlinear dynamical models. Automatica 51, 233–242 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Mahata, K., Schoukens, J., De Cock, A.: Information matrix and D-optimal design with Gaussian inputs for Wiener model identification. Automatica 69, 65–77 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Radhakrishna Rao, C.: Information and accuracy attainable in the estimation of statistical parameters. Bull. Calcutta Math. Soc. 37(3), 81–91 (1945)MathSciNetzbMATHGoogle Scholar
  15. 15.
    ITTC Recommended Procedures and Guidelines, Full Scale Manoeuvring Trials, Section 7.5-04-02-01, Rev. 01 (2002)Google Scholar
  16. 16.
    Issac, M.T., Adams, S., Bose, N., Williams, C.D., Bachmayer, R., Crees, T.: Analysis of horizontal zigzag manoeuvring trials from the MUN Explorer AUV. In: OCEANS 2008, pp. 1–7. IEEE (2008)Google Scholar
  17. 17.
    Steenson, L., Phillips, A., Furlong, M., Rogers, E., Turnock, S.: Maneuvering of an over-actuated autonomous underwater vehicle using both through-body tunnel thrusters and control surfaces (2011)Google Scholar
  18. 18.
    Kim, K., Kim, J., Choi, H.S., Lee, K.-Y., Seong, W.: Estimation of hydrodynamic coefficients of a test-bed AUV-SNUUV I by motion test. In: OCEANS’02 MTS/IEEE 2002, pp. 186–190. IEEE (2002)Google Scholar
  19. 19.
    Liang, X., Li, W., Lin, J., Su, L., Li, H.: Model identification for autonomous underwater vehicles based on maximum likelihood relaxation algorithm. In: Second International Conference on Computer Modeling and Simulation, 2010, ICCMS’10, pp. 128–132. IEEE (2010)Google Scholar
  20. 20.
    Luque, J.C.C., Donha, D.C.: AUV identification and robust control (2011)Google Scholar
  21. 21.
    Ridley, P., Fontan, J., Corke, P.: Submarine dynamic modelling. In: Proceedings of the 2003 Australasian Conference on Robotics & Automation. Australian Robotics & Automation Association (2003)Google Scholar
  22. 22.
    Blanke, M., Knudsen, M.: Efficient parameterization for grey-box model identification of complex physical systems. In: System Identification, vol. 1, pp. 338–343 (2006)Google Scholar
  23. 23.
    Xu, F., Zou, Z.-J., Yin, J.-C., Cao, J.: Identification modeling of underwater vehicles’ nonlinear dynamics based on support vector machines. Ocean Eng. 67, 68–76 (2013)CrossRefGoogle Scholar
  24. 24.
    Leontaritis, I., Billings, S.: Experimental design and identifiability for non-linear systems. Int. J. Syst. Sci. 18(1), 189–202 (1987)CrossRefzbMATHGoogle Scholar
  25. 25.
    Gupta, N.K., Hall Jr., W.E.: Input design for identification of aircraft stability and control derivatives (1975)Google Scholar
  26. 26.
    SNAME: Nomenclature for treating the motion of a submerged body through a fluid JR. Technical and Research Bulletin, New York (1952)Google Scholar
  27. 27.
    Prestero, T.T.J.: Verification of a Six-Degree of Freedom Simulation Model for the REMUS Autonomous Underwater Vehicle. Massachusetts Institute of Technology, Cambridge (2001)CrossRefGoogle Scholar
  28. 28.
    Garg, H.: A hybrid PSO-GA algorithm for constrained optimization problems. Appl. Math. Comput. 274, 292–305 (2016)MathSciNetGoogle Scholar
  29. 29.
    Chang, L.-C., Chang, F.-J., Wang, K.-W., Dai, S.-Y.: Constrained genetic algorithms for optimizing multi-use reservoir operation. J. Hydrol. 390(1), 66–74 (2010)CrossRefGoogle Scholar
  30. 30.
    Tang, M., Ai, L.: A hybrid genetic algorithm for the optimal constrained web service selection problem in web service composition. In: IEEE Congress on Evolutionary Computation 2010, pp. 1–8. IEEE (2010)Google Scholar
  31. 31.
    Goldenberg, D.: Genetic Algorithms in Search, Optimisation and Machine Learning. Adison Wesley, Boston (1989)Google Scholar
  32. 32.
    Carr, J.: An Introduction to Genetic Algorithms, Senior Project, pp. 1–40 (2014)Google Scholar
  33. 33.
    Issac, M.T., Adams, S., He, M., Bose, N., Williams, C.D., Bachmayer, R., Crees, T.: Manoeuvring experiments using the MUN Explorer AUV. In: Underwater Technology and Workshop on Scientific Use of Submarine Cables and Related Technologies, 2007. Symposium on 2007, pp. 256–262. IEEE (2007)Google Scholar
  34. 34.
    Dantas, J.L., Caetano, W.S., Vale, R.T., de Barros, E.A.: Analysis of identification methods applied to free model tests of the Pirajuba AUV. IFAC Proc. Vol. 46(33), 185–190 (2013)CrossRefGoogle Scholar
  35. 35.
    Eng, Y.H., Teo, K.M., Chitre, M., Ng, K.M.: Online system identification of an autonomous underwater vehicle via in-field experiments. IEEE J. Ocean. Eng. 41(1), 5–17 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2018

Authors and Affiliations

  1. 1.School of Mechanical EngineeringIran University of Science and TechnologyTehranIran

Personalised recommendations