Skip to main content
Log in

Derivation of dynamic equation of viscoelastic manipulator with revolute–prismatic joint using recursive Gibbs–Appell formulation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, the motion analysis of a viscoelastic manipulator with N-flexible revolute–prismatic joints is being studied with the help of a systematic algorithm. The presence of prismatic joints, along with revolute ones, makes the derivation of the equations complicated. The link’s axial motions cause variation of its flexible parts with respect to time. In order to modify the associated mode shapes concerning an instant link length, dynamic interaction between the rotary reciprocating motion and transverse vibration of the flexible arm is evaluated. The links are modeled on the assumed mode method using the Timoshenko beam theory (TBT). Dynamic equations are derived from the recursive Gibbs–Appell formulation. The formulation involves fewer mathematical calculations but shows efficient computational performance when compared to other formulations. The dynamic model of each joint shows flexibility, damping, backlash and frictions resulting in accuracy of the formulations. Applying recursive algorithm based on the \(3\times 3\) rotational matrix instead of the \(4\times 4\) one causes the computational performance to fall by separating the rotating matrix. Furthermore, motion equations are obtained symbolically and systematically. Links linear motion causes TBT mode shapes changes with respect to time. This is implemented in a non-dimensional form to avoid computing for each step. Finally, the following dynamic equations are solved numerically by MATLAB software for a spatial two-armed manipulator. The outcome of the simulations represents the ability of the proposed algorithm to derive and solve the equations of motion. Moreover, the data are compared with the rigid and elastic links, modeled by the Euler–Bernoulli beam theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

\(A_{\mathrm{s}} \) :

Corrected cross-sectional area of the links

B:

Viscose damping coefficient

\(\text {B}_{ji} \) :

Gibbs functions time variable coefficients

\({\mathbf{C}}\) :

Gibbs functions time variable-dependent coefficients

\(C_{i}^{P} ,C_{i}^{R} \) :

Linear damper coefficients of revolute and prismatic joints

\(D_{JP_{i} } ,\,D_{JR_{i} } \) :

Joints dissipation functions

\(D_{L_{i} } \) :

Links dissipation functions

\(\text {E}_{{i}} \) :

Links elasticity matrix

\(F_{\mathrm{c}} \) :

Coulomb friction force

\({\mathbf{F}}_{j} \) :

Prismatic joints applied force

\(F_{\mathrm{s}} \) :

Static friction forces

G :

Shear modulus

g :

Gravity acceleration

i :

links numbers

\({\mathbf{I}}({\varvec{\Theta }},{{\dot{\varvec{\Theta }}}})\) :

Inertia matrix

\({I}'_{\mathrm{r}_{i} } ,{I}'_{\mathrm{p}_{i} } \) :

Rotor moment inertias of revolute and prismatic joints

\(J_{i} \) :

Mass moment inertia per unit length

\(k_{b} \) :

Stiffness coefficients of backlash

\(V_{L_{i} } \) :

Links potential energy

\(w_{i} \) :

Small displacements in \(O_{i} z_{i} \) directions

\(\text {X}_{{0}} \text {Y}_{{0}} \text {Z}_{{0}} \) :

Unit vectors of inertia frame

\(\text {x}_{{i}} \text {y}_{{i}} \text {z}_{{i}} \) :

Unit vectors of joints coordinates

\({\hat{\text {x}}}_{{i}} {\hat{\text {y}}}_{{i}} {\hat{\text {z}}}_{{i}} \) :

Unit vectors of links end point coordinates

\({\mathbf{Re}}\) :

Forces and Remaining terms vector

\({\varvec{\upalpha }}_{i} \) :

Half of the backlash width

\(\alpha \) :

Gibbs functions time variable intermediate coefficient

\(\beta \) :

Gibbs functions time variable intermediate coefficient

\({\varvec{\Gamma }}\) :

Generalized applied forces

\(\gamma \) :

Air damping coefficient

\(\gamma _{T} \) :

TBT shear strain

\({\varvec{\Delta }}\) :

Links deflection

\({\updelta }\) :

Empirical constant

\(\delta _{ij} \) :

Modal generalized coordinates of ith link jth

\(\eta \) :

Location of any point along the neutral axis of the links

\(K_{\mathrm{p}_{i} } ,K_{\mathrm{r}_{i} } \) :

Linear spring coefficients of revolute and prismatic joints

\(K_{v_{i} } \) :

Kelvin–Voigt damping coefficient

L :

Links length

\(l_{i} (t)\) :

Variable flexible length of the link

m(i):

Link’s number of mode shapes

n :

Manipulator’s number of links

\({\mathbf{q}}_{i} \) :

Rotational generalized coordinates

\({\mathbf{Q}}_{{jf}} ,{\mathbf{Q}'}_{{j}} \) :

Intermediates vectors

\({\mathbf{q}}_{mi} \) :

Electrical motor position (index R for revolute ones and index P for prismatic ones)

\({\mathbf{r}}_{ij} \) :

Mode shapes of ith link jth

\({}^{{i}}{\mathbf{R}}_{{i-1}} \) :

Rotational matrix

\({}^{i}{\mathbf{r}}_{O_{i} } \) :

Joints coordinate absolute position

\({}^{{i}}{\mathbf{r}}_{{Q/O}_{{i}} } \) :

Element position with respect to joints coordinates

\({}^{{i}}{\mathbf{S}}_{{i}} ,{}^{{i}}{\mathbf{T}}_{{i}} \) :

Intermediates vectors

\(S_{\mathrm{JP}_{i} } ,S_{\mathrm{JR}_{i} } \) :

Joints Gibbs function

\(S_{L_{i} } \) :

Links Gibbs function

\(u_{i} \) :

Small displacements in \(O_{i} x_{i} \) directions

\(V_{\mathrm{JP}_{i} } ,\,V_{\mathrm{JR}_{i} } \) :

Joints potential energy

\({\varvec{\upeta }}_{i} \) :

Reciprocates generalized coordinates

\(\uptheta \) :

Bending angles

\({\varvec{\uptheta }}_{ij} \) :

Rotational mode shapes of \(i\text {th}\) links \(j\text {th}\)

\(\dot{{\theta }}_{\mathrm{s}} \) :

Stribeck speed

\({\varvec{\Theta }}\) :

Vectors of generalized coordinates

\(\kappa \) :

Timoshenko shear coefficients

\(\mu _{i} \) :

Mass per unit length

\(v_{i} \) :

Small displacements in \(O_{i} y_{i} \) directions

\({\varvec{\uptau }}_{j} \) :

Revolute joints applied torque

\(\tau _{1}^{p} \) :

Elastic torque between the rotor and links

\(\tau _{2}^{R} ,\,\tau _{2}^{p} \) :

Friction torques of joints

Q :

Arbitrary differential elements on links

\(\varphi _{T} \) :

TBT angle of rotations

\({}^{{j}}{{\vec {\varvec{\upvarphi }}}}_{{j}} ,\,{}^{{j}}{\varvec{\upchi }}_{{j}} \) :

Intermediates vectors (\({}^{{i}}{\mathbf{S}}_{{i}} ,{}^{{i}}{\mathbf{T}}_{{i}} \) ) in recursive form

\({}^{i}{\dot{{\varvec{\upomega }}}}_{i} \) :

Elements absolute rotational acceleration vectors

\({}^{i}{\ddot{{\mathbf{r}}}}_{Q_{i} } \) :

Element’s absolute linear acceleration vectors

References

  1. Kim, B., Chung, J.: Residual vibration reduction of a flexible beam deploying from a translating hub. J. Sound Vib. 333, 3759–3775 (2014)

    Article  Google Scholar 

  2. Huo, Y., Wang, Z.: Dynamic analysis of a vertically deploying/retracting cantilevered pipe conveying fluid. J. Sound Vib. 360, 224–238 (2016)

    Article  Google Scholar 

  3. Pedersen, H.C., Andersen, T.O., Nielsen, B.K.: Comparison of methods for modeling a hydraulic loader crane with flexible translational links. J Dyn. Syst. Meas. Control 137, 101–112 (2015)

    Article  Google Scholar 

  4. Sakamoto, H., Miyazaki, Y., Mori, O.: Transient dynamic analysis of gossamer-appendage deployment using nonlinear finite element method. J. Spacecr. Rocket. 48, 881–890 (2011)

    Article  Google Scholar 

  5. Tabarrok, B., Leech, C., Kim, Y.: On the dynamics of an axially moving beam. J. Frankl. Inst. 297, 201–220 (1974)

    Article  MATH  Google Scholar 

  6. Kane, T., Ryan, R., Banerjee, A.: Dynamics of a cantilever beam attached to a moving base. J. Guid. Control. Dyn. 10, 139–151 (1987)

    Article  Google Scholar 

  7. Wang, P.K.C., Wei, J.D.: Vibrations in a moving flexible robot arm. J. Sound Vib. 116, 149–160 (1987)

    Article  Google Scholar 

  8. Sharifnia, M., Akbarzadeh, A.: A constrained assumed modes method for dynamics of a flexible planar serial robot with prismatic joints. Multibody Syst. Dyn. (2016). doi:10.1007/s11044-016-9525-8

  9. Duan, Y.C., Wang, J.P., Wang, J.Q., Liu, Y.W., Shao, F.: Theoretical and experimental study on the transverse vibration properties of an axially moving nested cantilever beam. J. Sound Vib. 333, 2885–2897 (2014)

    Article  Google Scholar 

  10. Wang, L., Hu, Z., Zhong, Z., Ju, J.: Dynamic analysis of an axially translating viscoelastic beam with an arbitrarily varying length. Acta Mech. 214, 225–244 (2010)

    Article  MATH  Google Scholar 

  11. Tsai, L.-W.: Robot Analysis: The Mechanics of Serial and Parallel Manipulators. Wiley, Hoboken (1999)

    Google Scholar 

  12. Meirovitch, L.: Analytical Methods in Vibration. Macmillan, New York (1967)

    MATH  Google Scholar 

  13. Korayem, M., Shafei, A.: Application of recursive Gibbs–Appell formulation in deriving the equations of motion of N-viscoelastic robotic manipulators in 3D space using Timoshenko beam theory. Acta Astronaut. 83, 273–294 (2013)

    Article  Google Scholar 

  14. Korayem, M., Shafei, A., Absalan, F., Kadkhodaei, B., Azimi, A.: Kinematic and dynamic modeling of viscoelastic robotic manipulators using Timoshenko beam theory: theory and experiment. Int. J. Adv. Manuf. Technol. 71, 1005–1018 (2014)

    Article  Google Scholar 

  15. Loudini, M.: Elastic link Robot dynamics modeling based on Beam theories. Int. Rev. Model. Simul. 3, 1298–1307 (2010)

    Google Scholar 

  16. Zohoor, H., Kakavand, F.: Timoshenko versus Euler-Bernoulli beam theories for high speed two-link manipulator. Sci. Iran. 20, 172–178 (2013)

    Google Scholar 

  17. Ghayesh, M.H., Balar, S.: Non-linear parametric vibration and stability analysis for two dynamic models of axially moving Timoshenko beams. Appl. Math. Model. 34, 2850–2859 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ghayesh, M.H.: Coupled longitudinal - transverse dynamics of an axially accelerating beam. J. Sound Vib. 331, 5107–5124 (2012)

    Article  Google Scholar 

  19. Farokhi, H., Ghayesh, M.H., Hussain, S.: Three-dimensional nonlinear global dynamics of axially moving viscoelastic beams. J. Vib. Acoust. 138, 1001–1007 (2016)

    Google Scholar 

  20. Theodore, R.J., Ghosal, A.: Modeling of flexible-link manipulators with prismatic joints. IEEE Trans. Syst. Man Cybern. Part B Cybern. 27, 296–305 (1997)

  21. Chalhoub, N., Chen, L.: A structural flexibility transformation matrix for modeling open-kinematic chains with revolute and prismatic joints. J. Sound Vib. 218, 45–63 (1998)

    Article  Google Scholar 

  22. Farid, M., Salimi, I.: Inverse dynamics of a planar flexible-link manipulator with revolute - prismatic joints, vol. 111. American Society of Mechanical Engineers, Design Engineering Division (Publication), New York (2001)

    Google Scholar 

  23. Azhdari, A., Chalhoub, N., Gordaninejad, F.: Dynamic modeling of a revolute–prismatic flexible robot arm fabricated from advanced composite materials. Nonlinear Dyn. 2, 171–186 (1991)

    Article  Google Scholar 

  24. Kalyoncu, M.: Mathematical modeling and dynamic response of a multi-straight-line path tracing flexible robot manipulator with rotating-prismatic joint. Appl. Math. Model. 32, 1087–1098 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Korayem, M., Shafei, A., Dehkordi, S.: Systematic modeling of a chain of N-flexible link manipulators connected by revolute–prismatic joints using recursive Gibbs–Appell formulation. Arch. Appl. Mech. 84, 187–206 (2014)

    Article  MATH  Google Scholar 

  26. Korayem, M., Shafei, A.: Motion equation of non- Holonomic wheeled mobile robotic manipulator with revolute–prismatic joints using recursive Gibbs–Appell formulation. Appl. Math. Model. 39, 1701–1716 (2015)

    Article  MathSciNet  Google Scholar 

  27. Stelzle, D.-I.W., Hiller, I.M.: A comparative study of recursive methods. Arch. Appl. Mech. 66, 9–19 (1995)

    Article  MATH  Google Scholar 

  28. Book, W.J.: Recursive Lagrangian dynamics of flexible manipulator arms. Int. J. Robo. Res. 3, 87–101 (1984)

    Article  Google Scholar 

  29. Wehage, R., Shabana, A., Hwang, Y.: Projection methods in flexible Multibody dynamics. Part II: dynamics and recursive projection methods. Int. J. Numer. Methods Eng. 35, 1941–1966 (1992)

    Article  MATH  Google Scholar 

  30. Desoyer, K., Lugner, P.: Recursive formulation for the analytical or numerical application of the Gibbs–Appell method to the dynamics of robots. Robotica 7, 343–347 (1989)

    Article  Google Scholar 

  31. Shafei, A., Shafei, H.: Oblique Impact of Multi-Flexible-Link Systems. J. Vib. Control 1077546316654854, (2016)

  32. Mata, V., Provenzano, S., Valero, F., Cuadrado, J.: Serial-robot dynamics algorithms for moderately large numbers of joints. Mech. Mach. Theory 37, 739–755 (2002)

    Article  MATH  Google Scholar 

  33. Korayem, M., Shafei, A.: A new approach for dynamic modeling of n-viscoelastic-link robotic manipulators mounted on a mobile base. Nonlinear Dyn. 79, 2767–2786 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  34. Wu, Y., Wang, Z., Li, Y., Chen, W., Du, R., Chen, Q.: Characteristic modeling and control of servo systems with backlash and friction. Math. Probl. Eng. 2014, 1–21 (2014). doi:10.1155/2014/328450

    MathSciNet  Google Scholar 

  35. Han, S.M., Benaroya, H., Wei, T.: Dynamics of transversely vibrating beams using four engineering theories. J. Sound Vib. 225, 935–988 (1999)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. H. Korayem.

Appendices

Appendix A

1.1 Non-dimensional TBT mode shapes calculations

Han et al. [35] studied mode shapes extraction of TBT at different boundary conditions in dimensionless forms. With the help of Eqs (52 and 53), the following expressions include the generations approach for coefficients represented in these Equations:

$$\begin{aligned}&\left[ {{\begin{array}{*{20}c} {D_{1} } \\ {\begin{array}{l} D_{2} \\ D_{3} \\ D_{4} \\ \end{array}} \\ \end{array} }} \right] =\left[ {{\begin{array}{*{20}c} 0 &{} \alpha &{} 0 &{} 0 \\ {-\alpha } &{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} \beta \\ 0 &{} 0 &{} \beta &{} 0 \\ \end{array} }} \right] \left[ {{\begin{array}{*{20}c} {C_{1} } \\ {\begin{array}{l} C_{2} \\ C_{3} \\ C_{4} \\ \end{array}} \\ \end{array} }} \right] ;\nonumber \\&\alpha =-\frac{a^{2}+\gamma ^{2}b^{2}}{a(1+\gamma ^{2})};\,\beta =\frac{b^{2}+\gamma ^{2}a^{2}}{b(1+\gamma ^{2})};\nonumber \\&\gamma =\sqrt{\frac{2(1+\nu )}{{k}'}} \end{aligned}$$
(A.1)
$$\begin{aligned}&a=\sqrt{(I^{*}+\frac{1}{{k}'G^{*}})\frac{\rho ^{*}\omega ^{*{2}}}{2}+\sqrt{(I^{*}+\frac{1}{{k}'G^{*}})^{2}\frac{\rho ^{*^{2} }\omega ^{*{4}}}{2}+\rho ^{*}A^{*}\omega ^{*{2}}} } ;\, \nonumber \\&b=\sqrt{-(I^{*}+\frac{1}{{k}'G^{*}})\frac{\rho ^{*}\omega ^{*{2}}}{2}+\sqrt{(I^{*}+\frac{1}{{k}'G^{*}})^{2}\frac{\rho ^{*{2}}\omega ^{*{4}}}{2}+\rho ^{*}A^{*}\omega ^{*{2}}} }\nonumber \\ \end{aligned}$$
(A.2)

where a and b are wave numbers. Dimensionless variables are shown by asterisk. Dimensionless variables introduced below, respectively:

$$\begin{aligned} L^{*}= & {} L/L=1;\,\,\,\,\,\nu ^{*}=\nu /L;\,\,\,x^{*}=x/L\nonumber \\ A^{*}= & {} A/L^{2};\,\,\,\rho ^{*}=\rho /\left( \frac{EI}{L^{6}}\right) ;\,\,\,\,t^{*}=t/(1/\omega _{1} ) \nonumber \\ I^{*}= & {} I/L^{4};\,\,\,G^{*}=G/\left( \frac{EI}{L^{4}}\right) ; \end{aligned}$$
(A.3)

For a cantilever beam, boundary conditions are represented as:

$$\begin{aligned} \left[ {{\begin{array}{*{20}c} {y(0)} \\ {\theta _{z} (0)} \\ \end{array} }} \right] \,=\left[ {{\begin{array}{*{20}c} 0 \\ 0 \\ \end{array} }} \right] ;\,\,\,\,\left[ {{\begin{array}{*{20}c} {\frac{\partial \theta _{z} (1)}{\partial \eta }} \\ {\frac{\partial y(1)}{\partial \eta }-\theta _{z} (1)} \\ \end{array} }} \right] \,=\left[ {{\begin{array}{*{20}c} 0 \\ 0 \\ \end{array} }} \right] ,\nonumber \\ \end{aligned}$$
(A.4)

The boundary conditions were applied on Eqs. (52 and 53). Thus, the obtained frequency equations represent as:

$$\begin{aligned}&(a^{2}-b^{2})\sin a\,\sinh b-ab\,\cos a\,\cosh b\nonumber \\&\quad \times \frac{a^{4}+\,a^{4}\gamma ^{4}+4a^{2}b^{2}\gamma ^{2}+b^{4}+\,b^{4}\gamma ^{4}}{(a^{2}+b^{2}\gamma ^{2})(b^{2}+a^{2}\gamma ^{2})}-2ab=0,\nonumber \\ \end{aligned}$$
(A.5)

And mode shapes coefficients are calculated as:

$$\begin{aligned} \left[ {{\begin{array}{*{20}c} {C_{1} } \\ {\begin{array}{l} C_{2} \\ C_{3} \\ C_{4} \\ \end{array}} \\ \end{array} }} \right] =\left[ {{\begin{array}{*{20}c} 1 \\ {-C_{4} } \\ {\frac{\alpha }{\beta }} \\ {\alpha \frac{2a\,\sin \,a\mathrm{e}^{b}+b\,\mathrm{e}^{a}-b}{2\alpha a\,\cos \,a\mathrm{e}^{b}-\beta b\mathrm{e}^{2b}-b\beta }} \\ \end{array} }} \right] \end{aligned}$$
(A.6)

Appendix B

Dependent coefficients \({\mathbf{C}}\) expressions:

$$\begin{aligned} {\mathbf{C}}_{1ij}= & {} \int _{L_{i} }^{L_{i} +\,l_{i} } {\mu _{i} \,{\mathbf{r}}_{ij} d\eta _{i} } ; \end{aligned}$$
(B.1)
$$\begin{aligned} {{\tilde{\mathbf{C}}}}_{1ij}= & {} \int _{L_{i} }^{L_{i} +\,l_{i} } {\mu _{i} \,{{\tilde{\mathbf{r}}}}_{ij} d\eta _{i} } ; \end{aligned}$$
(B.2)
$$\begin{aligned} C_{2i}= & {} \int _{l_{i} }^{\,L_{i} +l_{i} } {\mu _{i} \,\eta _{i} {}^{i}{{\tilde{\mathbf{x}}}}_{i} d\eta _{i} } \end{aligned}$$
(B.3)
$$\begin{aligned} C_{3ij}= & {} \int _{L_{i} }^{L_{i} +\,l_{i} } {\mu _{i} \,{}^{i}{\mathbf{x}}_{i}^{\mathrm{T}} \cdot {\mathbf{r}}_{ij} d\eta _{i} } ; \end{aligned}$$
(B.4)
$$\begin{aligned} C_{4ijk}= & {} \int _{L_{i} }^{\,L_{i} +l_{i} } {\mu _{i} \,{\mathbf{r}}_{ij}^{\mathrm{T}} \cdot \,{\mathbf{r}}_{ik} d\eta _{i} } ; \end{aligned}$$
(B.5)
$$\begin{aligned} {\mathbf{C}}_{5ij}= & {} \int _{L_{i} }^{\,L_{i} +l_{i} } {\mu _{i} {}^{i}{{\tilde{\mathbf{x}}}}_{i} \,{\mathbf{r}}_{ij} d\eta _{i} } \end{aligned}$$
(B.6)
$$\begin{aligned} {\mathbf{{C}'}}_{5ij}= & {} \int _{L_{i} }^{\,L_{i} +l_{i} } {\mu _{i} \eta _{i} {}^{i}{{\tilde{\mathbf{x}}}}_{i} \,{\mathbf{r}}_{ij} d\eta _{i} }; \end{aligned}$$
(B.7)
$$\begin{aligned} {\mathbf{C}}_{6ijk}= & {} \int _{L_{i} }^{L_{i} +\,l_{i} } {\mu _{i} \,{{\tilde{\mathbf{r}}}}_{ij} {\mathbf{r}}_{ik} d\eta _{i} } ; \end{aligned}$$
(B.8)
$$\begin{aligned} C_{7i}= & {} \int _{l_{i} }^{\,L_{i} +l_{i} } {\mu _{i} \,\eta _{i} {}^{i}{{\tilde{\mathbf{x}}}}_{i}^{\mathrm{T}} \,{}^{i}{{\tilde{\mathbf{x}}}}_{i} d\eta _{i} } \end{aligned}$$
(B.9)
$$\begin{aligned} {C}'_{7i}= & {} \int _{l_{i} }^{\,L_{i} +l_{i} } {\mu _{i} \,\eta _{i}^{2} {}^{i}{{\tilde{\mathbf{x}}}}_{i}^{\mathrm{T}} \,{}^{i}{{\tilde{\mathbf{x}}}}_{i} d\eta _{i} } ; \end{aligned}$$
(B.10)
$$\begin{aligned} C_{8ij}= & {} \int _{L_{i} }^{\,L_{i} +l_{i} } {\mu _{i} {}^{i}{{\tilde{\mathbf{x}}}}_{i}^{\mathrm{T}} \,\,{{\tilde{\mathbf{r}}}}_{ij} d\eta _{i} } ; \end{aligned}$$
(B.11)
$$\begin{aligned} {C}'_{8ij}= & {} \int _{L_{i} }^{\,L_{i} +l_{i} } {\mu _{i} \eta _{i} {}^{i}{{\tilde{\mathbf{x}}}}_{i}^{\mathrm{T}} \,\,{{\tilde{\mathbf{r}}}}_{ij} d\eta _{i} } \end{aligned}$$
(B.12)
$$\begin{aligned} C_{9ijk}= & {} \int _{L_{i} }^{L_{i} +\,l_{i} } {\mu _{i} \,{{\tilde{\mathbf{r}}}}_{ij}^{\mathrm{T}} {{\tilde{\mathbf{r}}}}_{ik} d\eta _{i} } ; \end{aligned}$$
(B.13)
$$\begin{aligned} C_{10ijk}= & {} \int _{L_{i} }^{L_{i} +l_{i} } {{\varvec{\uptheta }}_{ij}^{\mathrm{T}} \cdot \,J_{i} \,{\varvec{\uptheta }}_{ik} d\eta }; \end{aligned}$$
(B.14)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korayem, M.H., Dehkordi, S.F. Derivation of dynamic equation of viscoelastic manipulator with revolute–prismatic joint using recursive Gibbs–Appell formulation. Nonlinear Dyn 89, 2041–2064 (2017). https://doi.org/10.1007/s11071-017-3569-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3569-z

Keywords

Navigation