Skip to main content
Log in

Homoclinic bifurcation of a ratio-dependent predator–prey system with impulsive harvesting

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, we investigate a ratio-dependent prey–predator model with state-dependent impulsive harvesting where the prey growth rate is subject to a strong Allee effect. The existence of order-1 homoclinic cycle is obtained, and choosing \(\alpha \) as a control parameter, the existence, uniqueness and stability of order-1 periodic solution of the system are discussed by means of the geometry theory of semi-continuous dynamic system. We also investigate that system exhibits the phenomenon of homoclinic bifurcation about parameter \(\alpha \). Moreover, the numerical simulations are provided to show the main results. The used methods are intuitive to prove the existence of order-1 periodic solution and homoclinic bifurcation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Mesterton-Gibbons, M.: A technique for finding optimal two species harvesting policies. Ecol. Model. 92, 235–244 (1996)

    Article  Google Scholar 

  2. Chaudhuri, K.S.: A bioeconomic model of harvesting a multispecies fishery. Ecol. Model. 32, 267–279 (1986)

    Article  Google Scholar 

  3. Gu, E.G., Tian, F.: Complex dynamics analysis for a duopoly model of common fishery resource. Nonlinear Dyn. 61, 579–590 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Rojas-Palma, A., Gonzalez-Olivares, E.: Optimal harvesting in a predator–prey model with Allee effect and sigmoid functional response. Appl. Math. Model. 36, 1864–1874 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Kar, T.K., Swarnakamal Misra, M., Mukhopadhyay, B.: A bioeconomic model of a ratio-dependent predator–prey system and optimal harvesting. J. Appl. Math. Comput. 22, 387–401 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Arditi, R., Ginzburg, L.R.: Coupling in predator–prey dynamics: ratio-dependence. J. Theor. Biol. 139, 311–326 (1989)

    Article  Google Scholar 

  7. Arditi, R., Ginzburg, L.R., Akcakaya, H.R.: Variation in plankton densities among lakes: a case for ratio-dependent models. Am. Nat. 138, 1287–1296 (1991)

    Article  Google Scholar 

  8. Bishop, M.J., Kelaher, B.P., Smith, M., York, P.H., Booth, D.J.: Ratio-dependent response of a temperate Australian estuarine system to sustained nitrogen loading. Oecologia 149, 701–708 (2006)

    Article  Google Scholar 

  9. Kuang, Y., Beretta, E.: Global qualitative analysis of a ratio-dependent predator–prey system. J. Math. Biol. 36, 389–406 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hsu, S.B., Hwang, T.W., Kuang, Y.: Global analysis of the Michaelis–Menten-type retio-dependent predator–prey system. J. Math. Biol. 42, 489–506 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Xiao, D., Ruan, S.: Global dynamics of a ratio-dependent predator–prey system. J. Math. Biol. 43, 268–290 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Pal, P.J., Saha, T.: Qualitative analysis of a predator–prey system with double Allee effect in prey. Chaos Solitons Fract. 73, 36–63 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Luck, R.F.: Evaluation of natural enemies for biological control: a behavior approach. Trends Ecol. Evol. 5, 196–199 (1990)

    Article  Google Scholar 

  14. Hairston, N.G., Smith, F.E., Slobodkin, L.B.: Community structure, population control and competition. Am. Nat. 94, 421–425 (1960)

    Article  Google Scholar 

  15. Rosenzweig, M.L.: Paradox of enrichment: destabilization of exploitation systems in ecological time. Science. 171, 385–387 (1969)

    Article  Google Scholar 

  16. Berec, L., Angulo, E., Courchamp, F.: Multiple Allee effects and population management. Trends Ecol. Evol. 22, 185–191 (2007)

    Article  Google Scholar 

  17. Courchamp, F., Clutton-Brock, T., Grenfell, B.: Inverse density dependence and the Allee effect. Trends Ecol. Evol. 14, 405–410 (1999)

    Article  Google Scholar 

  18. Guo, H.J., Chen, L.S., Song, X.Y.: Mathematical models of restoration and control of a single species with Allee effect. Appl. Math. Model. 34, 3264–3272 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Allee, W.C.: Animal Aggregations: A Study in General Sociology. University of Chicago Press, Chicago (1931)

    Book  Google Scholar 

  20. Groom, M.J.: Allee effects limit population viability of an annual plant. Am. Nat. 151, 487–496 (1998)

    Article  Google Scholar 

  21. Stephens, P.A., Sutherland, W.J.: Consequences of the Allee effect for behaviour. Ecology and conservation. Trends Ecol. Evol. 14, 401–404 (1999)

    Article  Google Scholar 

  22. Sen, M., Banerjee, M., Morozov, A.: Bifurcation analysis of a ratio-dependent prey–predator model with the Allee effect. Ecol. Complex. 11, 12–27 (2012)

    Article  Google Scholar 

  23. Lewis, M.A., Kareiva, P.: Allee dynamics and the spread of invading organisms. Theor. Popul. Biol. 43, 141–158 (1993)

    Article  MATH  Google Scholar 

  24. Odum, E., Barrett, G.W.: Fundamentals of Ecology. Thomson Brooks/Cole, Belmont, CA (2004)

    Google Scholar 

  25. Zhao, Z., Li, Y., Chen, L.S.: Impulsive state feedback control of the microorganism culture in a turbidostat. J. Math. Chem. 47, 1224–1239 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Li, Z.X., Chen, L.S., Liu, Z.J.: Periodic solution of a chemostat model with variable yield and impulsive state feedback control. Appl. Math. Model. 36, 1255–1266 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Sun, K.B., Tian, Y., Chen, L.S., Kasperski, A.: Nonlinear modelling of a synchronized chemostat with impulsive state feedback control. Math. Comput. Model. 52, 227–240 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. Wei, C.J., Chen, L.S.: Periodic solution and heteroclinic bifurcation in a prey–predator model with Allee effect and impulsive harvesting. Nonlinear Dyn. 76, 1109–1117 (2014)

    Article  MATH  Google Scholar 

  29. Liu, B., Tian, Y., Kang, B.: Dynamics on a Holling II predator–prey model with state-dependent impulsive control. Int. J. Biomath. 5, 1260006 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Chen, L.S.: Pest control and geometric ththeory of Semicontinuous dynamical system. J. Beihua Univ. 12, 1–9 (2011)

    Google Scholar 

  31. Huang, M.Z., Liu, S.Z., Song, X.Y., Chen, L.S.: Periodic solutions and homoclinic bifurcation of a predator–prey system with two types of harvesting. Nonlinear Dyn. 73, 815–826 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  32. Guo, H.J., Chen, L.S.: Periodic solution of a chemostat model with Monod growth rate and impulsive feedback control. J. Theor. Biol. 260, 502–509 (2009)

    Article  MathSciNet  Google Scholar 

  33. Pang, G.P., Chen, L.S., Xu, W.J., Fu, G.: A stage structure pest management model with impulsive state feedback control. Commun. Nonlinear Sci. Numer. Simul. 23, 78–88 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  34. Xiao, Q.Z., Dai, B.X., Xu, B.X., Bao, L.S.: Homoclinic bifurcation for a general for general state-dependent Kolmogorov type predator–prey model with harvesting. Nonlinear Anal. Real. 26, 263–273 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  35. Bainov, D.D., Simeonov, P.E.: Impulsive Differential Equations: Periodic Solution and Applications. Longman, London (1993)

    MATH  Google Scholar 

  36. Li, AnW: Impact of noise on pattern formation in a predator–prey model. Nonlinear Dyn. 66, 689–694 (2011)

    Article  MathSciNet  Google Scholar 

  37. Li, AnW: Pattern dynamics of a spatial predator–prey model with noise. Nonlinear Dyn. 67, 1737–1744 (2012)

    Article  MathSciNet  Google Scholar 

  38. Sun, G.Q., Jin, Zh, Li, L., Haque, M., Li, B.L.: Spatial patterns of a predator–prey model with cross diffusion. Nonlinear Dyn. 69, 1631–1638 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  39. Sun, G.Q., Li, L., Zhang, Z.K.: Spatial dynamics of a vegetation model in an arid flat environment. Nonlinear Dyn. 73, 2207–2219 (2013)

    Article  MathSciNet  Google Scholar 

  40. Sun, G.Q., Wu, Z.Y., Wang, Zh, Jin, Zh: Influence of isolation degree of spatial patterns on persistence of populations. Nonlinear Dyn. 83, 811–819 (2016)

    Article  MathSciNet  Google Scholar 

  41. Sun, G.Q.: Mathematical modeling of population dynamics with Allee effect. Nonlinear Dyn. 85, 1–2 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by the Natural Science Foundation of China (11301216, 11371306) and Fujian Provincial Natural Science Foundation of China (2016J01667).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunjin Wei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, C., Liu, J. & Chen, L. Homoclinic bifurcation of a ratio-dependent predator–prey system with impulsive harvesting. Nonlinear Dyn 89, 2001–2012 (2017). https://doi.org/10.1007/s11071-017-3567-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3567-1

Keywords

Navigation