Skip to main content
Log in

A review for dynamics in neuron and neuronal network

  • Review
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The biological Hodgkin–Huxley model and its simplified versions have confirmed its effectiveness for recognizing and understanding the electrical activities in neurons, and bifurcation analysis is often used to detect the mode transition in neuronal activities. Within the collective behaviors of neurons, neuronal network with different topology is designed to study the synchronization behavior and spatial pattern formation. In this review, the authors give careful comments for the presented neuron models and present some open problems in this field, nonlinear analysis could be effective to further discuss these problems and some results could be helpful to give possible guidance in the field of neurodynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. (Lond.) 117, 500–544 (1952)

    Article  Google Scholar 

  2. Morris, C., Lecar, H.: Voltage oscillations in the barnacle giant muscle fiber. Biophys. J. 35, 193–213 (1981)

    Article  Google Scholar 

  3. Hindmarsh, J.L., Rose, R.M.: A model of the nerve impulse using twofirst-order differential equations. Nature (Lond.) 296, 162C164 (1982)

    Article  Google Scholar 

  4. Izhikevich, E.M.: Which model to use for cortical spiking neurons? IEEE Trans. Neural Netw. 15, 1063–1070 (2004)

    Article  Google Scholar 

  5. Ibarz, B., Casado, J.M., Sanjuàn, M.A.F.: Map-basedmodels in neuronal dynamics. Phys. Rep. 501, 1–74 (2011)

    Article  Google Scholar 

  6. Gu, H.G., Pan, B.B.: A four-dimensional neuronal model to describe the complex nonlinear dynamics observed in the firing patterns of a sciatic nerve chronic constriction injury model. Nonlinear Dyn. 81, 2107–2126 (2015)

    Article  MathSciNet  Google Scholar 

  7. Wang, X.J., Buzsáki, G.: Gamma oscillation by synaptic inhibition in a Hippocampal interneuronal network model. J. Neurosci. 16(20), 6402–6413 (1996)

    Google Scholar 

  8. Chen, W., Rolls, E.T., Gu, H.G., et al.: Autism: reduced connectivity between cortical areas involved in face expression, theory of mind, and the sense of self. Brain 138, 1382–1393 (2015)

    Article  Google Scholar 

  9. Volman, V., Perc, M., Bazhenov, M.: Gap junctions and epileptic seizures-two sides of the same coin? PLoS ONE 6, e20572 (2011)

    Article  Google Scholar 

  10. Howe, W.M., Gritton, H.J., Lusk, N.A., et al.: Acetylcholine release in prefrontal cortex promotes gamma oscillations and theta–gamma coupling during cue detection. J. Neurosci. 37, 3215–3230 (2017)

    Article  Google Scholar 

  11. Postnov, D.E., Koreshkov, R.N., Brazhe, N.A., et al.: Dynamical patterns of calcium signaling in a functional model of neuron-astrocyte networks. J. Biol. Phys. 35, 425–445 (2009)

    Article  Google Scholar 

  12. Volman, V., Bazhenov, M., Sejnowski, T.J.: Computational models of neuron-astrocyte interaction in epilepsy. Front. Comput. Neurosci. 6, 58 (2012)

    Article  Google Scholar 

  13. Volman, V., Perc, M., Bazhenov, M.: Gap junctions and epileptic seizures-two sides of the same coin? PLoS ONE 6, e20572 (2011)

    Article  Google Scholar 

  14. Herz, A.V.M., Gollisch, T., Machens, C.K., et al.: Modeling single-neuron dynamics and computations: a balance of detail and abstraction. Science 314, 80–85 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Auld, D.S., Robitaille, R.: Glial cells and neurotransmission. Neuron 40, 389–400 (2003)

    Article  Google Scholar 

  16. Tang, J., Liu, T.B., Ma, J., et al.: Effect of calcium channel noise in astrocytes on neuronal transmission. Commun. Nonlinear Sci. Numer. Simul. 32, 262–272 (2016)

    Article  MathSciNet  Google Scholar 

  17. Tang, J., Luo, J.M., Ma, J.: Information transmission in a neuron-astrocyte coupled model. PLoS ONE 8, e80324 (2013)

    Article  Google Scholar 

  18. Tang, J., Zhang, J., Ma, J., et al.: Astrocyte calcium wave induces seizure-like behavior in neuron network. Sci. China Technol. Sci. (2016). doi:10.1007/s11431-016-0293-9

    Google Scholar 

  19. Li, J.J., Tang, J., Ma, J., et al.: Dynamic transition of neuronal firing induced by abnormal astrocytic glutamate oscillation. Sci. Rep. 6, 32343 (2016)

    Article  Google Scholar 

  20. Nadkarni, S., Jung, P.: Spontaneous oscillations of dressed neurons: a new mechanism for epilepsy? Phys. Rev. Lett. 91, 268101 (2003)

    Article  Google Scholar 

  21. Bekkers, J.M., Stevens, C.F.: Excitatory and inhibitory autaptic currents in isolated hippocampal neurons maintained in cell culture. PNAS 88, 7834–7838 (1991)

    Article  Google Scholar 

  22. Saada, R., Miller, N., Hurwitz, I., et al.: Autaptic excitation elicits persistent activity and a plateau potential in a neuron of known behavioral function. Curr. Biol. 19, 479–484 (2009)

    Article  Google Scholar 

  23. Wang, H.T., Wang, L.F., Chen, Y.L., et al.: Effect of autaptic activity on the response of a Hodgkin–Huxley neuron. Chaos 24, 033122 (2014)

    Article  MathSciNet  Google Scholar 

  24. Song, X.L., Wang, C.N., Ma, J., et al.: Transition of electric activity of neurons induced by chemical and electric autapses. Sci. China Technol. Sci. 58, 1007–1014 (2015)

    Article  Google Scholar 

  25. Guo, D.Q., Chen, M.M., Perc, M., et al.: Firing regulation of fast-spiking interneurons by autaptic inhibition. EPL 114, 30001 (2016)

    Article  Google Scholar 

  26. Yilmaz, E., Baysal, V., Perc, M., et al.: Autaptic pacemaker mediated propagation of weak rhythmic activity across small-world neuronal networks. Phys. A 444, 538–546 (2016)

    Article  MathSciNet  Google Scholar 

  27. Herrmann, C.S., Klaus, A.: Autapse turns neuron into oscillator. Int. J. Bifurc. Chaos 14, 623–633 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  28. Yilmaz, E., Ozer, M., Baysal, V., et al.: Autapse-induced multiple coherence resonance in single neurons and neuronal networks. Sci. Rep. 6, 30914 (2016)

    Article  Google Scholar 

  29. Ma, J., Qin, H.X., Song, X.L., et al.: Pattern selection in neuronal network driven by electric autapses with diversity in time delays. Int. J. Mod. Phys. B 29, 1450239 (2015)

    Article  Google Scholar 

  30. Ma, J., Xu, Y., Tang, J., et al.: Defects formation and wave emitting from defects in excitable media. Commun. Nonlinear Sci. Numer. Simul. 34, 55–65 (2016)

    Article  MathSciNet  Google Scholar 

  31. Qin, H.X., Wu, Y., Wang, C.N., et al.: Emitting waves from defects in network with autapses. Commun. Nonlinear Sci. Numer. Simul. 23, 164–174 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  32. Wang, C.N., Guo, S.L., Xu, Y., et al.: Formation of autapse connected to neuron and its biological function. Complexity 2017, 5436737 (2017)

    MathSciNet  Google Scholar 

  33. Guo, S.L., Wang, C.N., Ma, J., et al.: Transmission of blocked electric pulses in a cable neuron model by using an electric field. Neurocomputing 216, 627–637 (2016)

    Article  Google Scholar 

  34. Xu, Y., Ying, H.P., Jia, Y., et al.: Autaptic regulation of electrical activities in neuron under electromagnetic induction. Sci. Rep. 7, 43452 (2017)

    Article  Google Scholar 

  35. White, J.A., Rubinstein, J.T., Kay, A.R.: Channel noise in neurons. Trends Neurosci. 23, 131–137 (2000)

    Article  Google Scholar 

  36. Kampen, N.G.: Stochastic Processes in Physics and Chemisty. North-Holland, Amsterdam (1981)

    Google Scholar 

  37. Fox, R.F., Lu, Y.N.: Emergent collective behavior in large numbers of globally coupled independently stochastic ion channels. Phys. Rev. E 49, 3421 (1994)

    Article  Google Scholar 

  38. Scimid, G., Goychuk, I., Hänggi, P.: Effect of channel block on the spiking activity of excitable membranes in a stochastic Hodgkin–Huxley model. Phys. Biol. 1, 61–66 (2004)

    Article  Google Scholar 

  39. Perc, M.: Effects of small-world connectivity on noise induced temporal and spatial order in neural media. Chaos Solitons Fractals 31, 280–291 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  40. Sinha, S., Saramaki, J., Kaski, K.: Emergence of selfsustained patterns in small-world excitable media. Phys. Rev. E 76, 015101 (2007)

    Article  Google Scholar 

  41. Wang, Q.Y., Perc, M., Duan, Z.S., et al.: Delay-enhanced coherence of spiral waves in noisy Hodgkin–Huxley neuronal networks. Phys. Lett. A 372, 5681–5687 (2008)

    Article  MATH  Google Scholar 

  42. Ma, J., Hu, B.L., Wang, C.N., et al.: Simulating the formation of spiral wave in the neuronal system. Nonlinear Dyn. 73, 73–83 (2013)

    Article  MathSciNet  Google Scholar 

  43. Schiff, S.J., Huang, X.Y., Wu, J.Y.: Dynamical evolution of spatiotemporal patterns in mammalian middle cortex. Phys. Rev. Lett. 98, 178102 (2007)

    Article  Google Scholar 

  44. Song, X.L., Wang, C.N., Ma, J., et al.: Collapse of ordered spatial pattern in neuronal network. Phys. A 451, 95–112 (2016)

    Article  MathSciNet  Google Scholar 

  45. Ma, J., Xu, Y., Ren, G.D., et al.: Prediction for breakup of spiral wave in a regular neuronal network. Nonlinear Dyn. 84, 497–509 (2016)

    Article  MathSciNet  Google Scholar 

  46. Brunel, N., Wang, X.J.: What Determines the frequency of fast network oscillations with irregular neural discharges? I. Synaptic dynamics and excitation–inhibition balance. J. Neurophys. 90(1), 415–430 (2002)

    Article  Google Scholar 

  47. Chih, B., Engelman, H., Scheiffele, P.: Control of excitatory and inhibitory synapse formation by neuroligins. Science 307(5713), 1324–1328 (2005)

    Article  Google Scholar 

  48. Alvarez, F.Z.: Gephyrin and the regulation of synaptic strength and dynamics at glycinergic inhibitory synapses. Brain Res. Bull. 129, 50–65 (2017)

    Article  Google Scholar 

  49. Chen, L.F., Cao, H.J.: Synchronization dynamics of two heterogeneous chaotic Rulkov neurons with electrical synapses. Int. J. Bifurc. Chaos 27(2), 1730009 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  50. Jalil, S., Belykh, I., Shilnikov, A.: Spikes matter for phase-locked bursting in inhibitory neurons. Phys. Rev. E 85, 036214 (2012)

    Article  Google Scholar 

  51. Belykh, B., Shilnikov, A.: When weak inhibition synchronizes strongly desynchronizing networks of bursting neurons. Phys. Rev. Lett. 101, 078102 (2008)

    Article  Google Scholar 

  52. Wang, C.N., Ma, J., Liu, Y., et al.: Chaos control, spiral wave formation, and the emergence of spatiotemporal chaos in networked Chua circuits. Nonlinear Dyn. 67, 139–146 (2012)

    Article  MATH  Google Scholar 

  53. Hossmann, K.A., Hermann, D.M.: Effects of electromagnetic radiation of mobile phones on the central nervous system. Bioelectromagnetics 24, 49–62 (2003)

    Article  Google Scholar 

  54. Lisi, A., Ciotti, M.T., Ledda, M., et al.: Exposure to 50 Hz electromagnetic radiation promote early maturation and differentiation in newborn rat cerebellar granule neurons. J. Cell. Phys. 204(2), 532–538 (2005)

    Article  Google Scholar 

  55. Xu, S.C., Zhou, Z., Zhang, L., et al.: Exposure to 1800 MHz radiofrequency radiation induces oxidative damage to mitochondrial DNA in primary cultured neurons. Brain Res. 1311, 189–196 (2010)

    Article  Google Scholar 

  56. Zhao, R., Zhang, S.Z., Xu, Z.P., et al.: Studying gene expression profile of rat neuron exposed to 1800 MHz radiofrequency electromagnetic fields with cDNA microassay. Toxicology 235(3), 167–175 (2007)

    Article  Google Scholar 

  57. Masuda, H., Ushiyama, A., Takahashi, M., et al.: Effects of 915 MHz electromagnetic-field radiation in TEM cell on the blood–brain barrier and neurons in the rat brain. Radiat. Res. 172(1), 66–73 (2009)

    Article  Google Scholar 

  58. Xu, S.J., Ning, W., Xu, Z.P., et al.: Chronic exposure to GSM 1800-MHz microwaves reduces excitatory synaptic activity in cultured hippocampal neurons. Neurosci. Lett. 398(3), 253–257 (2006)

    Article  Google Scholar 

  59. Chua, L.O.: Memristorłthe missing circuit element. IEEE Trans. Circuit Theory 18, 507–519 (1971)

    Article  Google Scholar 

  60. Lv, M., Wang, C.N., Ren, G.D., et al.: Model of electrical activity in a neuron under magnetic flow effect. Nonlinear Dyn. 85, 1479–1490 (2016)

    Article  Google Scholar 

  61. Lv, M., Ma, J.: Multiple modes of electrical activities in a new neuron model under electromagnetic radiation. Neurocomputing 205, 375–381 (2016)

    Article  Google Scholar 

  62. Wu, F.Q., Wang, C.N., Xu, Y., et al.: Model of electrical activity in cardiac tissue under electromagnetic induction. Sci. Rep. 6, 28 (2016)

    Article  Google Scholar 

  63. Wu, F.Q., Wang, C.N., Jin, W.Y., et al.: Dynamical responses in a new neuron model subjected to electromagnetic induction and phase noise. Phys. A 469, 81–88 (2017)

    Article  MathSciNet  Google Scholar 

  64. Whan, C.B., Lobb, C.J.: Complex dynamical behavior in RCL-shunted Josephson tunnel junctions. Phys. Rev. E 53, 405 (1996)

    Article  Google Scholar 

  65. Dana, S.K., Sengupta, D.C., Edoh, K.D., et al.: Chaotic dynamics in Josephson junction. IEEE Trans. Circuit Syst. 48, 990–996 (2001)

    Article  Google Scholar 

  66. Crotty, P., Schult, D., Segall, K., et al.: Josephson junction simulation of neurons. Phys. Rev. E 82, 0119141 (2010)

    Article  Google Scholar 

  67. Li, F., Liu, Q.R., Guo, H.Y., et al.: Simulating the electric activity of FitzHugh–Nagumo neuron by using Josephson junction model. Nonlinear Dyn. 69, 2169–2179 (2012)

    Article  MathSciNet  Google Scholar 

  68. Itoh, M., Chua, L.O.: Memristor oscillators. Int. J. Bifurc. Chaos 18, 3183–3206 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  69. Strukov, D.B., Snider, G.S., Stewart, G.R., Williams, R.S.: The missing memristor found. Nature 453, 80–83 (2008)

    Article  Google Scholar 

  70. Cafagna, D., Grassi, G.: On the simplest fractional-order memristor-based chaotic system. Nonlinear Dyn. 70, 1185–1197 (2012)

    Article  MathSciNet  Google Scholar 

  71. Si, G.Q., Diao, L.J., Zhu, J.W.: Fractional-order charge-controlled memristor: theoretical analysis and simulation. Nonlinear Dyn. 87, 2625–2634 (2017)

    Article  Google Scholar 

  72. Sabarathinam, S., Volos, C.K., Thamilmaran, K.: Implementation and study of the nonlinear dynamics of a memristor-based Duffing oscillator. Nonlinear Dyn. 87, 37–49 (2017)

    Article  Google Scholar 

  73. Kengne, J., Negou, A.N., Tchiotsop, D.: Antimonotonicity, chaos and multiple attractors in a novel autonomous memristor-based jerk circuit. Nonlinear Dyn. (2017). doi:10.1007/s11071-017-3397-1

    Google Scholar 

  74. Zhou, L., Wang, C.N., Zhou, L.L.: Generating hyperchaotic multi-wing attractor in a 4D memristive circuit. Nonlinear Dyn. 85, 2653–2663 (2016)

    Article  Google Scholar 

  75. Ma, J., Wu, F.Q., Ren, G.D., et al.: A class of initials-dependent dynamical systems. Appl. Math. Comput. 298, 65–76 (2017)

    MathSciNet  Google Scholar 

  76. Wu, X.Y., Ma, J., Yuan, L.H., et al.: Simulating electric activities of neurons by using PSPICE. Nonlinear Dyn. 75, 113–126 (2014)

    Article  MathSciNet  Google Scholar 

  77. Ma, J., Wu, X.Y., Chu, R.T., et al.: Selection of multi-scroll attractors in Jerk circuits and their verification using Pspice. Nonlinear Dyn. 76, 1951–1962 (2014)

    Article  Google Scholar 

  78. Huang, L., Ma, J., Tang, J., et al.: Transition of ordered waves in neuronal network by diffusive poisoning of ion channels. J. Biol. Syst. 21, 1350002 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  79. Wu, X.Y., Ma, J., Li, F., et al.: Development of spiral wave in a regular network of excitatory neurons due to stochastic poisoning of ion channels. Commun. Nonlinear Sci. Numer. Simul. 18, 3350–3364 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  80. Erichsen Jr., R., Brunnet, L.G.: Multistability in networks of Hindmarsh–Rose neurons. Phys. Rev. E 78, 061917 (2008)

    Article  Google Scholar 

  81. Yao, C.G., Deng, H.Y., Ma, C.Z., et al.: Impact of bounded noise and rewiring on the formation and instability of spiral waves in a small-world network of Hodgkin-Huxley neurons. PLoS ONE 12(1), e0171273 (2017)

    Article  Google Scholar 

  82. Yao, C.G., Deng, H.Y., Yi, M., et al.: Impact of bounded noise on the formation and instability of spiral wave in a 2D Lattice of neurons. Sci. Rep. 7, 43151 (2017)

    Article  Google Scholar 

  83. Dhamala, M., Viktor, K.J., Ding, M.Z.: Transitions to synchrony in coupled bursting neurons. Phys. Rev. Lett. 92, 028101 (2004)

    Article  Google Scholar 

  84. Wang, Q.Y., Perc, M., Duan, Z.S., Chen, G.R.: Synchronization transitions on scale-free neuronal networks due to finite information transmission delays. Phys. Rev. E 80, 026206 (2009)

    Article  Google Scholar 

  85. Ye, W.J., Liu, S.Q., Liu, X.L.: Synchronization of two electrically coupled inspiratory pacemaker neurons. Sci. China Technol. Sci. 57, 929–935 (2014)

    Article  Google Scholar 

  86. Ma, J., Song, X.L., Tang, J., et al.: Wave emitting and propagation induced by autapse in a forward feedback neuronal network. Neurocomputing 167, 378–389 (2015)

    Article  Google Scholar 

  87. Yu, W.T., Tang, J., Ma, J., et al.: Heterogeneous delay-induced asynchrony and resonance in a small-world neuronal network system. EPL 114, 50006 (2016)

    Article  Google Scholar 

  88. Ma, J., Tang, J.: A review for dynamics of collective behaviors of network of neurons. Sci. China Technol. Sci. 58, 2038–2045 (2015)

    Article  Google Scholar 

  89. Gosak, M., Marhl, M., Perc, M.: Pacemaker-guided noise-induced spatial periodicity in excitable media. Phys. D 238, 506–515 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  90. Wang, Q.Y., Perc, M., Duan, Z.S., Chen, G.R.: Delay-induced multiple stochastic resonances on scale-free neuronal networks. Chaos 19, 023112 (2009)

    Article  Google Scholar 

  91. Gu, H.G., Jia, B., Li, Y.Y., et al.: White noise-induced spiral waves and multiple spatial coherence resonances in a neuronal network with type I excitability. Phys. A 392, 1361–1374 (2013)

    Article  MathSciNet  Google Scholar 

  92. Guo, D.Q., Li, C.G.: Stochastic resonance in Hodgkin–Huxley neuron induced by unreliable synaptic transmission. J. Theor. Biol. 308, 105–114 (2012)

    Article  MathSciNet  Google Scholar 

  93. Wang, R.B., Zhang, Y.T.: Can the activities of the large scale cortical network be expressed by neural energy? A brief review. Cogn. Neurodyn. 10(1), 1–5 (2016)

    Article  Google Scholar 

  94. Fell, J., Axmacher, N.: The role of phase synchronization in memory processes. Nat. Rev. Neurosci. 12, 105–118 (2011)

    Article  Google Scholar 

  95. Wang, Y., Ma, J., Xu, Y., et al.: The electrical activity of neurons subject to electromagnetic induction and Gaussian white noise. Int. J. Bifurc. Chaos 27(2), 1750030 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  96. Ma, J., Mi, L., Zhou, P., et al.: Phase synchronization between two neurons induced by coupling of electromagnetic field. Appl. Math. Comput. 307, 321–328 (2017)

    MathSciNet  Google Scholar 

  97. Jia, B., Gu, H.G., Xue, L.: A basic bifurcation structure from bursting to spiking of injured nerve fibers in a two-dimensional parameter space. Cogn. Neurodyn. 11(2), 189–200 (2017)

    Article  Google Scholar 

  98. Zhao, Z.G., Jia, B., Gu, H.G.: Bifurcations and enhancement of neuronal firing induced by negative feedback. Nonlinear Dyn. 86(3), 1549–1560 (2016)

    Article  Google Scholar 

  99. Wostyn, S., Staljanssens, W., De Taeye, L., et al.: EEG derived brain activity reflects treatment response from Vagus nerve stimulation in patients with epilepsy. Int. J. Neural Syst. 27(4), 1650048 (2017)

    Article  Google Scholar 

  100. Mohamed, S., Haggag, S., Nahavandi, S., et al.: Towards automated quality assessment measure for EEG signals. Neurocomputing 237, 281–290 (2017)

    Article  Google Scholar 

  101. Patidar, S., Panigrahi, T.: Detection of epileptic seizure using Kraskov entropy applied on tunable-Q wavelet transform of EEG signals. Biomed. Signal Proc. Control 34, 74–80 (2017)

    Article  Google Scholar 

  102. Dieter, J., Hoffmann, S., Mier, D., et al.: The role of emotional inhibitory control in specific internet addiction—an fMRI study. Behav. Brain Res. 324, 1–14 (2017)

    Article  Google Scholar 

  103. Shen, B., Gao, Y., Zhang, W.B., et al.: Resting state fMRI reveals increased subthalamic nucleus and sensorimotor cortex connectivity in patients with Parkinson’s disease under medication. Front. Aging Neurosci. 9, 74 (2017)

    Google Scholar 

  104. Kasabov, N.K., Doborjeh, M.G., Doborjeh, Z.G.: Mapping, learning, visualization, classification, and understanding of fMRI Data in the NeuCube evolving spatiotemporal data machine of spiking neural networks. IEEE Trans. Neural Netw. 28(4), 887–889 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work is partially supported by the National Nature Science Foundation of China under the Grant No. 11672122.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, J., Tang, J. A review for dynamics in neuron and neuronal network. Nonlinear Dyn 89, 1569–1578 (2017). https://doi.org/10.1007/s11071-017-3565-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3565-3

Keywords

Navigation