Skip to main content
Log in

Design and ARM-embedded implementation of a chaotic secure communication scheme based on H.264 selective encryption

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, a novel video chaotic secure communication scheme and its ARM-embedded hardware implementation are investigated, based on the H.264 selective encryption and multi-core multi-process. A six-dimensional discrete-time hyperchaotic system equipped with a nonlinear nominal matrix is firstly constructed, and the corresponding chaotic encryption algorithm is then designed. During H.264 encoding, the difference components of motion vectors in both the horizontal and vertical directions, as well as the DC transform coefficients, are selectively encrypted by using such a chaotic encryption algorithm, respectively, so as to enhance the safety performance. To improve the processing speed and transmission frame rate of the whole hardware system, an ARM-based hardware platform with multi-core multi-process is further adopted to realize the H.264 selective video chaotic secure communication, where the sender collects and encrypts the original video with four-core four-process mode, and the receiver decrypts the encrypted video with three-core three-process mode, in which one core binds one process. Finally, the security performance of the designed system is tested using the TESTU01 statistical test suites and some other statistical security analysis. Both theoretical analysis and experimental results validate the feasibility and reliability of the proposed scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Dufaux, F., Ebrahimi, T.: Scrambling for privacy protection in video surveillance systems. IEEE Trans. Circuits Syst. Video Technol. 18(8), 1168–1174 (2008)

    Article  Google Scholar 

  2. Arachchi, H.K., Perramon, X., Dogan, S., Kondoz, A.M.: Adaptation-aware encryption of scalable H.264/AVC video for content security. Signal Process. Image Commun. 24(6), 468–483 (2009)

    Article  Google Scholar 

  3. Hellwagner, H., Kuschnig, R., Stütz, T., Uhl, A.: Efficient in-network adaptation of encrypted H.264/SVC content. Signal Process. Image Commun. 24(9), 740–758 (2009)

    Article  Google Scholar 

  4. Liu, F., Koenig, H.: A survey of video encryption algorithms. Comput. Secur. 29(1), 3–15 (2010)

    Article  Google Scholar 

  5. Wang, Y., O’Neill, M., Kurugollu, F., O’Sullivan, E.: Privacy region protection for H.264/AVC with enhanced scrambling effect and a low bitrate overhead. Signal Process. Image Commun. 35, 71–84 (2015)

    Article  Google Scholar 

  6. Unterweger, A., Uhl, A.: Slice groups for post-compression region of interest encryption in H.264/AVC and its scalable extension. Signal Process. Image Commun. 16(2), 111–133 (2014)

    Google Scholar 

  7. Peng, F., Zhu, X., Long, M.: An ROI privacy protection scheme for H.264 video based on FMO and chaos. IEEE Trans. Inf. Forensics Secur. 8(10), 1688–1699 (2013)

    Article  Google Scholar 

  8. Tong, L., Dai, F., Zhang, Y., Li, J.: Prediction restricted H.264/AVC video scrambling for privacy protection. Electron. Lett. 46(1), 47–49 (2010)

    Article  Google Scholar 

  9. Lian, S., Liu, Z., Ren, Z., Wang, H.: Commutative encryption and watermarking in video compression. IEEE Trans. Circuits Syst. Video Technol. 17(6), 774–778 (2007)

    Article  Google Scholar 

  10. Lin, Z., Yu, S., Lü, J., Cai, S., Chen, G.: Design and ARM-embedded implementation of a chaotic map-based real-time secure video communication system. IEEE Trans. Circuits Syst. Video Technol. 25(7), 1203–1216 (2015)

    Article  Google Scholar 

  11. Lian, S., Liu, Z., Ren, Z., Wang, H.: Secure advanced video coding based on selective encryption algorithms. IEEE Trans. Consum. Electron. 52(2), 621–629 (2006)

    Article  Google Scholar 

  12. Yeung, S.K.A., Zhu, S., Zeng, B.: Perceptual video encryption using multiple 8\(\times \)8 transforms in H.264 and MPEG-4. In: International Conference on Acoustics, Speech, and Signal Processing (2011)

  13. Shahid, Z., Puech, W.: Visual protection of HEVC video by selective encryption of CABAC binstrings. IEEE Trans. Multimed. 16(1), 24–36 (2014)

    Article  Google Scholar 

  14. Su, P.C., Hsu, C.W., Wu, C.Y.: A practical design of content protection for H.264/AVC compressed videos by selective encryption and fingerprinting. Multimed. Tools Appl. 52(2–3), 529–549 (2010)

    Google Scholar 

  15. Zhu, B.B., Yuan, C., Wang, Y., Li, S.: Scalable protection for MPEG-4 fine granularity scalability. IEEE Trans. Multimed. 7(2), 222–223 (2005)

    Article  Google Scholar 

  16. Zeng, B., Yeung, S.K.A., Zhu, S., Gabbouj, M.: Perceptual encryption of H.264 videos: embedding sign-flips into the integer-based transforms. IEEE Trans. Inf. Forensics Secur. 9(2), 309–320 (2014)

    Article  Google Scholar 

  17. Shahid, Z., Chaumont, M., Puech, W.: Fast protection of H.264/AVC by selective encryption of CAVLC and CABAC for I and P frames. IEEE Trans. Circuits Syst. Video Technol. 21(5), 565–576 (2011)

    Article  Google Scholar 

  18. Asghar, M.N., Ghanbari, M.: An efficient security system for CABAC bin-strings of H.264/SVC. IEEE Trans. Circuits Syst. Video Technol. 23(3), 425–437 (2013)

    Article  Google Scholar 

  19. Lui, O.Y., Wong, K.W.: Chaos-based selective encryption for H.264/AVC. J. Syst. Softw. 86(12), 3183–3192 (2013)

    Article  Google Scholar 

  20. Jiang, J., Liu, Y., Su, Z., Zhang, G., Xing, S.: An improved selective encryption for H.264 video based on intra prediction mode scrambling. J. Multimed. 5(5), 464–472 (2010)

    Article  Google Scholar 

  21. Chou, H.G., Chuang, C.F., Wang, W.J., Lin, J.C.: A fuzzy-model-based chaotic synchronization and its implementation on a secure communication system. IEEE Trans. Inf. Forensics Secur. 8(12), 2177–2185 (2013)

    Article  Google Scholar 

  22. Chung, Y., Lee, S., Jeon, T., Park, D.: Fast video encryption using the H.264 error propagation property for smart mobile devices. Sensors 15, 7953–7968 (2015)

    Article  Google Scholar 

  23. Zou, Y., Huang, T., Gao, W., Huo, L.: H.264 video encryption scheme adaptive to DRM. IEEE Trans. Consum. Electron. 5(4), 1289–1297 (2006)

    Article  Google Scholar 

  24. Chen, P., Yu, S., Zhang, X., He, J., Lin, Z., Li, C., Lü, J.: ARM-embedded implementation of a video chaotic secure communication via WAN remote transmission with desirable security and frame rate. Nonlinear Dyn. 86(2), 725–740 (2016)

    Article  Google Scholar 

  25. Alvarez, G., Li, S.: Some basic cryptographic requirements for chaos-based cryptosystems. Int. J. Bifurc. Chaos 16(8), 2129–2151 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kocarev, L.: Chaos-based cryptography: a brief overview. IEEE Circuits Syst. Mag. 1(3), 6–21 (2002)

  27. Kocarev, L., Lian, S.: Chaos-Based Cryptography Theory, Algorithms and Applications. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  28. Banerjee, S., Kurths, J.: Chaos and cryptography: a new dimension in secure communications. Eur. Phys. J. Spec. Top. 223(8), 1441–1445 (2014)

    Article  Google Scholar 

  29. Annovazzi-Lodi, V., Benedetti, M., Merlo, S., Norgia, M., Provinzano, B.: Optical chaos masking of video signals. IEEE Photonics Technol. Lett. 17(9), 1995–1997 (2005)

    Article  Google Scholar 

  30. Sadoudi, S., Tanougast, C., Azzaz, M.S., Dandache, A.: Design and FPGA implementation of a wireless hyperchaotic communication system for secure real-time image transmission. EURASIP J. Image Video Process. 43, 1–18 (2013)

    MATH  Google Scholar 

  31. Enayatifar, R., Abdullah, A.H., Isnin, I.F.: Chaos-based image encryption using a hybrid genetic algorithm and a DNA sequence. Opt. Lasers Eng. 56, 83–93 (2014)

    Article  Google Scholar 

  32. Massoudi, A., Lefebvre, F., Vleeschouwer, C.D., Macq, B., Quisquater, J.J.: Overview on selective encryption of image and video, challenges and perspectives. EURASIP J. Inf. Secur. 2008, 1–18 (2008)

  33. Tlelo-Cuautle, E., Pano-Azucena, A.D., Rangel-Magdaleno, J.J., Carbajal-Gomez, V.H., Rodriguez-Gomez, G.: Generating a 50-scroll chaotic attractor at 66 MHz by using FPGAs. Nonlinear Dyn. 85(4), 2143–2157 (2016)

    Article  Google Scholar 

  34. Tlelo-Cuautle, E., Rangel-Magdaleno, J.J., Pano-Azucena, A.D., Obeso-Rodelo, P.J., Nunez-Perez, J.C.: FPGA realization of multi-scroll chaotic oscillators. Commun. Nonlinear Sci. Numer. Simul. 27(1–3), 66–80 (2015)

    Article  MathSciNet  Google Scholar 

  35. Carbajal-Gomez, V.H., Tlelo-Cuautle, E., Fernandez, F.V.: Optimizing the positive Lyapunov exponent in multi-scroll chaotic oscillators with differential evolution algorithm. Appl. Math. Comput. 219(15), 8163–8168 (2013)

    MathSciNet  MATH  Google Scholar 

  36. de la Fraga, L.G., Tlelo-Cuautle, E.: Optimizing the maximum Lyapunov exponent and phase space portraits in multi-scroll chaotic oscillators. Nonlinear Dyn. 76(2), 1503–1515 (2014)

    Article  Google Scholar 

  37. Trejo-Guerra, R., Tlelo-Cuautle, E., Cruz-Hernandez, C., Sanchez-lopez, C.: Chaotic communication system using Chua’s oscillators realized with CCII+s. Int. J. Bifurc. Chaos 19(12), 4217–4226 (2009)

    Article  Google Scholar 

  38. Tlelo-Cuautle, E., Carbajal-Gomez, V.H., Obeso-Rodelo, P.J., Rangel-Magdaleno, J.J., Nuñez-Perez, J.C.: FPGA realization of a chaotic communication system applied to image processing. Nonlinear Dyn. 82(4), 1879–1892 (2015)

    Article  MathSciNet  Google Scholar 

  39. Pano-Azucena, A.D., de Jesus Rangel-Magdaleno, J., Tlelo-Cuautle, E., de Jesus Quintas-Valles, A.: Arduino-based chaotic secure communication system using multi-directional multi-scroll chaotic oscillators. Nonlinear Dyn. 87(4), 2203–2217 (2017)

    Article  Google Scholar 

  40. Li, C.: Cracking a hierarchical chaotic image encryption algorithm based on permutation. Signal Process. 118, 203–210 (2016)

    Article  Google Scholar 

  41. Li, C., Liu, Y., Zhang, L.Y., Chen, M.Z.Q.: Breaking a chaotic image encryption algorithm based on modulo addition and XOR operation. Int. J. Bifurc. Chaos 23(4), 1350075 (2013)

  42. Xie, E.Y., Li, C., Yu, S., Lü, J.: On the cryptanalysis of Fridrich’s chaotic image encryption scheme. Signal Process. 132, 150–154 (2017)

    Article  Google Scholar 

  43. Chang, J.F., Yang, Y.S., Liao, T.L., Yan, J.J.: Parameter identification of chaotic systems using evolutionary programming approach. Expert Syst. Appl. 35(4), 2074–2079 (2008)

    Article  Google Scholar 

  44. Sun, J., Zhao, J., Wu, X., Fang, W., Cai, Y., Xu, W.: Parameter estimation for chaotic systems with a drift particle swarm optimization method. Phys. Lett. A 374(28), 2816–2822 (2010)

    Article  MATH  Google Scholar 

  45. Ho, W.H., Chou, J.H., Guo, C.Y.: Parameter identification of chaotic systems using improved differential evolution algorithm. Nonlinear Dyn. 61(1–2), 29–41 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  46. Chen, Z., Yuan, X., Yuan, Y., Iu, H.H.C., Fernando, T.: Parameter identification of chaotic and hyper-chaotic systems using synchronization-based parameter observer. IEEE Trans. Circuits Syst. I Regul. Pap. 63(9), 1464–1475 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2016YFB0800401), the National Natural Science Foundation of China (No. 61532020, 61671161, 61172023), the Science and Technology Planning Project of Guangzhou (No. 201510010136).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simin Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Yu, S., Chen, P. et al. Design and ARM-embedded implementation of a chaotic secure communication scheme based on H.264 selective encryption. Nonlinear Dyn 89, 1949–1965 (2017). https://doi.org/10.1007/s11071-017-3563-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3563-5

Keywords

Navigation