Skip to main content
Log in

Outer synchronization of small-world networks by a second-order sliding mode controller

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, we investigate outer synchronization of two small-world dynamical networks via second-order sliding mode control strategy. In particular, based on the coupling feature of the nodes, a message feedback chain is established. And then, the synchronization will be analyzed via pinning some nodes. By means of the second-order sliding mode theory, we propose the effective controller to realize outer synchronization between two small-world networks with a lower cost. Finally, we present some simulations to illustrate the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Motter, A.E.: Networkcontrology. Chaos Interdiscip. J. Nonlinear Sci. 25(9), 097621 (2015)

    Article  MathSciNet  Google Scholar 

  2. Porter, M.A., Gleeson, J.P.: Dynamical Systems on Networks: A Tutorial. Springer, Berlin (2016)

    Book  MATH  Google Scholar 

  3. Gates, A. J., Rocha, L. M.: Control of complex networks requires both structure and dynamics. Scientific reports 6 (2016)

  4. Zhao, H., Li, L., Peng, H., et al.: Impulsive control for synchronization and parameters identification of uncertain multi-links complex network. Nonlinear Dyn. 83(3), 1437–1451 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Mao, X., Wang, Z.: Stability, bifurcation, and synchronization of delay-coupled ring neural networks. Nonlinear Dyn. 84(2), 1063–1078 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ma, J., Qin, H., Song, X., et al.: Pattern selection in neuronal network driven by electric autapses with diversity in time delays. Int. J. Mod. Phys. B 29(01), 1450239 (2015)

    Article  Google Scholar 

  7. Zheng, S.: Adaptive impulsive observer for outer synchronization of delayed complex dynamical networks with output coupling. J. Appl. Math. 450193-11 (2014)

  8. Ma, J., Song, X., Tang, J., et al.: Wave emitting and propagation induced by autapse in a forward feedback neuronal network. Neurocomputing 167, 378–389 (2015)

    Article  Google Scholar 

  9. Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74(1), 47–97 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Rafiq, M.Y., Bugmann, G., Easterbrook, D.J.: Neural network design for engineering applications. Comput. Struct. 79(17), 1541–1552 (2001)

    Article  Google Scholar 

  11. Boccaletti, S., Latora, V., Moreno, Y., et al.: Complex networks: structure and dynamics. Phys. Rep. 424(4), 175–308 (2006)

    Article  MathSciNet  Google Scholar 

  12. Mao, X.: Stability switches, bifurcation, and multi-stability of coupled networks with time delays. Appl. Math. Comput. 218(11), 6263–6274 (2012)

    MathSciNet  MATH  Google Scholar 

  13. Mao, X., Wang, Z.: Stability switches and bifurcation in a system of four coupled neural networks with multiple time delays. Nonlinear Dyn. 82(3), 1551–1567 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Mao, X.: Bifurcation, synchronization, and multistability of two interacting networks with multiple time delays. Int. J. Bifurc. Chaos 26(09), 1650156 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Bashan, A., Bartsch, R.P., Kantelhardt, J.W., et al.: Network physiology reveals relations between network topology and physiological function. Nat. Commun. 3, 702 (2012)

    Article  Google Scholar 

  16. Rohden, M., Sorge, A., Witthaut, D., et al.: Impact of network topology on synchrony of oscillatory power grids. Chaos Interdiscip. J. Nonlinear Sci. 24(1), 013123 (2014)

    Article  MathSciNet  Google Scholar 

  17. Barabási, A.L.: Scale-free networks: a decade and beyond. Science 325(5939), 412–413 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Watts, D.J., Strogatz, S.H.: Collective dynamics of small-world networks. Nature 393, 440–442 (1998)

    Article  Google Scholar 

  19. Hui-Xin, Q., Jun, M., Wu-Yin, J., et al.: Dislocation coupling-induced transition of synchronization in two-layer neuronal networks. Commun. Theor. Phys. 62(5), 755–767 (2014)

    Article  MathSciNet  Google Scholar 

  20. Ning, D., Wu, X., Lu, J., et al.: Driving-based generalized synchronization in two-layer networks via pinning control. Chaos Interdiscip. J. Nonlinear Sci. 25(11), 113104 (2015)

    Article  MathSciNet  Google Scholar 

  21. Boccaletti, S., Kurths, J., Osipov, G., et al.: The synchronization of chaotic systems. Phys. Rep. 366(1), 1–101 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  22. Landau, I.D., Lozano, R., M’Saad, M., et al.: Adaptive Control. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  23. Hou, H., Zhang, Q., Zheng, M.: Cluster synchronization in nonlinear complex networks under sliding mode control. Nonlinear Dyn. 83(1–2), 739–749 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. Wang, X., Fang, J., Mao, H., et al.: Finite-time global synchronization for a class of Markovian jump complex networks with partially unknown transition rates under feedback control. Nonlinear Dyn. 79(1), 47–61 (2015)

    Article  MATH  Google Scholar 

  25. Wang, Q., Perc, M., Duan, Z., Chen, G.: Synchronization transitions on scale-free neuronal networks due to finite information transmission delays. Phys. Rev. E 86, 026206 (2009)

    Article  Google Scholar 

  26. Zhu, D., Liu, C., Yan, B.: Modeling and adaptive pinning synchronization control for a chaotic-motion motor in complex network. Phys. Lett. A 378(5), 514–518 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wang, X.F., Chen, G.: Pinning control of scale-free dynamical networks. Phys. A Stat. Mech. Appl. 310(3), 521–531 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  28. Yu, W., Chen, G., Lü, J.: On pinning synchronization of complex dynamical networks. Automatica 45(2), 429–435 (2009)

  29. Li, C., Sun, W., Kurths, J.: Synchronization between two coupled complex networks. Phys. Rev. E 76, 046204 (2007)

    Article  Google Scholar 

  30. Tang, H., Chen, L., Lu, J., et al.: Adaptive synchronization between two complex networks with nonidentical topological structures. Phys. A Stat. Mech. Appl. 387(22), 5623–5630 (2008)

    Article  Google Scholar 

  31. Li, C., Xu, C., Sun, W., et al.: Outer synchronization of coupled discrete-time networks. Chaos Interdiscip. J. Nonlinear Sci. 19(1), 013106 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  32. Wu, X., Zheng, W.X., Zhou, J.: Generalized outer synchronization between complex dynamical networks. Chaos Interdiscip. J. Nonlinear Sci. 19(1), 013109 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  33. Wang, G., Cao, J., Lu, J.: Outer synchronization between two nonidentical networks with circumstance noise. Phys. A Stat. Mech. Appl. 389(7), 1480–1488 (2010)

    Article  Google Scholar 

  34. Wu, X., Lu, H.: Generalized function projective (lag, anticipated and complete) synchronization between two different complex networks with nonidentical nodes. Commun. Nonlinear Sci. Numer. Simul. 17(7), 3005–3021 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  35. Emelyanov, S.V.: Control of first order delay systems by mean of astatic controller and nonlinear correction. Autom. Remote Control 20(8), 983–991 (1959)

    Google Scholar 

  36. Utkin, V.: Variable structure systems with sliding modes. IEEE Trans. Automat. Control 22(2), 212–222 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  37. Bartolini, G., Ferrara, A., Usai, E.: Chattering avoidance by second-order sliding mode control. IEEE Trans. Automat. Control 43(2), 241–246 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  38. Levant, A.: Higher-order sliding modes, differentiation and output-feedback control. Int. J. Control 76(9–10), 924–941 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  39. Feng, Y., Han, X., Wang, Y., Yu, X.: Second-order terminal sliding mode control of uncertain multivariable systems. Int. J. Control 80(6), 856–862 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  40. Pecora, L.M., Carroll, T.L.: Master stability functions for synchronized coupled systems. Phys. Rev. Lett. 80(10), 2109 (1998)

    Article  Google Scholar 

  41. Newman, M.E.J.: The structure and function of complex networks. SIAM Rev. 45(2), 167–256 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  42. Mondal, S., Mahanta, C.: Adaptive second order terminal sliding mode controller for robotic manipulators. J. Frankl. Inst. 351(4), 2356–2377 (2013)

    Article  MathSciNet  Google Scholar 

  43. Rössler, O.E.: An equation for continuous chaos. Phys. Lett. A 57(5), 397–398 (1976)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Science Foundation of China (Grants 11602146, 11572015), Chenguang Program supported by Shanghai Education Development Foundation and Shanghai Municipal Education Commission (No. 16CG65), and the Introduction of Talents Scientific Research Project of Shanghai Institute of Technology (No. YJ2016-16).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuang Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Wang, Q. Outer synchronization of small-world networks by a second-order sliding mode controller. Nonlinear Dyn 89, 1817–1826 (2017). https://doi.org/10.1007/s11071-017-3554-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3554-6

Keywords

Navigation