Skip to main content
Log in

A low-complexity tracker design for uncertain nonholonomic wheeled mobile robots with time-varying input delay at nonlinear dynamic level

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A low-complexity design problem of tracking scheme for uncertain nonholonomic mobile robots is investigated in the presence of unknown time-varying input delay. It is assumed that nonlinearities and parameters of robots and their bounds are unknown. Based on a nonlinear error transformation, a tracking control scheme ensuring preassigned bounds of overshoot, convergence rate, and steady-state values of a tracking error is firstly presented in the absence of input delay, without using any adaptive and function approximation mechanism to estimate unknown nonlinearities and model parameters and computing repeated time derivatives of certain signals. Then, we develop a low-complexity tracking scheme to deal with unknown time-varying input delay of mobile robots where some auxiliary signals and design conditions are derived for the design and stability analysis of the proposed tracking scheme. The boundedness of all signals in the closed-loop system and the guarantee of tracking performance with preassigned bounds are established through Lyapunov stability analysis. The validity of the proposed theoretical result is shown by a simulation example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Bresch-Pietri, D., Krstic, M.: Adaptive trajectory tracking despite unknown input delay and plant parameters. Automatica 45, 2074–2081 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Rho, Y.H., Oh, J.H.: Sliding mode control with uncertainty adaptation for uncertain input-delay systems. In: Proceedings of American Control Conference, Chicago, Illinois, pp. 636-639 (2000)

  3. Smith, O.M.: A controller to overcome deadtime. ISA J. 6, 28–33 (1959)

    Google Scholar 

  4. Artstein, Z.: Linear systems with delayed controls. IEEE Trans. Autom. Control 27(4), 869–879 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  5. Manitius, A., Smyshlyaev, A.: Finite spectrum assignment problem for first-order hyperbolic PDEs and application to systems with actuator and sensor delays. IEEE Trans. Autom. Control 24(4), 541–552 (1979)

    Article  Google Scholar 

  6. Rho, Y.H., Oh, J.H.: Robust stabilization of uncertain input-delay systems by sliding mode control with delay compensation. Automatica 35, 1861–1865 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. Zhou, J., Wen, C., Wang, W.: Adaptive backstepping control of uncertain systems with unknown input time-delay. Automatica 45, 1415–1422 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Zhang, X., Su, H., Lu, R.: Second-order integral sliding mode control for uncertain systems with control input time delay based on singular perturbation approach. IEEE Trans. Autom. Control 60(11), 3095–3100 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Krstic, M.: Input delay compensation for forward complete and strict-feedforward nonlinear systems. IEEE Trans. Autom. Control 55, 287–303 (2010)

    Article  MathSciNet  Google Scholar 

  10. Sharma, N., Bhasin, S., Wang, Q., Dixon, W.E.: Predictor-based control for an uncertain Euler–Lagrange system with input delay. Automatica 47, 2332–2342 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fischer, N., Kamalapurkar, R., Fitz-Coy, N., Dixon, W.E.: Lyapunov-based control of an uncertain Euler–Lagrange system with time-varying input delay. In: Proceedings of American Control Conference, Montreal, Canada, pp. 3919–3924 (2012)

  12. Roy, S., Karm, I.N.: Adaptive robust tracking control of a class of nonlinear systems with input delay. Nonlinear Dyn. 85(2), 1127–1139 (2016)

    Article  MathSciNet  Google Scholar 

  13. Das, T., Kar, I.N.: Design and implementation of an adaptive fuzzy logic-based controller for wheeled mobile robots. IEEE Trans. Control Syst. Technol. 14(3), 501–510 (2006)

    Article  Google Scholar 

  14. Dixon, W.E., Queiroz, M.S., Dawson, D.M., Flynn, T.J.: Adaptive tracking and regulation of a wheeled mobile robot with controller/update law modularity. IEEE Trans. Control Syst. Technol. 12(1), 138–147 (2004)

    Article  Google Scholar 

  15. Do, K.D., Jiang, Z.P., Pan, J.: Simultaneous tracking and stabilization of mobile robots: an adaptive approach. IEEE Trans. Autom. Control 49(7), 1147–1152 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dong, W., Kuhnert, K.D.: Robust adaptive control of nonholonomic mobile robot with parameter and nonparameter uncertainties. IEEE Trans. Robot. 21(2), 261–266 (2005)

  17. Fierro, R., Lewis, F.L.: Control of a nonholonomic mobile robot using neural networks. IEEE Trans. Neural Netw. 9(4), 589–600 (1998)

    Article  Google Scholar 

  18. Fukao, T., Nakagawa, H., Adachi, N.: Adaptive tracking control of a nonholonomic mobile robot. IEEE Trans. Robot. Autom. 16(5), 609–615 (2000)

    Article  Google Scholar 

  19. Park, B.S., Yoo, S.J., Park, J.B., Choi, Y.H.: Adaptive neural sliding mode control of nonholonomic wheeled mobile robots with model uncertainty. IEEE Trans. Control Syst. Technol. 17(1), 207–214 (2009)

    Article  Google Scholar 

  20. Park, B.S., Yoo, S.J., Choi, Y.H., Park, J.B.: A simple adaptive control approach for trajectory tracking of nonholonomic electrically driven mobile robots. IEEE Trans. Control Syst. Technol. 18(5), 1199–1206 (2010)

    Article  Google Scholar 

  21. Park, B.S., Yoo, S.J., Park, J.B., Choi, Y.H.: Adaptive output feedback control for trajectory tracking of electrically driven non-holonomic mobile robots. IET Control Theory Appl. 5(6), 830–838 (2011)

    Article  MathSciNet  Google Scholar 

  22. Yang, S.X., Zhu, A., Yuan, G., Meng, M.Q.H.: A bioinspired neurodynamics-based approach to tracking control of mobile robots. IEEE Trans. Ind. Electron. 59(8), 3211–3220 (2012)

    Article  Google Scholar 

  23. Yoo, S.J., Choi, Y.H., Park, J.B.: Generalized predictive control based on self-recurrent wavelet neural network for stabel path tracking of mobile robots: adaptive learning rates approach, IEEE Trans. Circuit Syst. I Regul. Paper 53(6), 1381–1394 (2006)

    Article  Google Scholar 

  24. Yoo, S.J.: Adaptive-observer-based dynamic surface tracking of a class of mobile robots with nonlinear dynamics considering unknown wheel slippage. Nonlinear Dyn. 81, 1611–1622 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Bechlioulis, C.P., Rovithakis, G.A.: A low-complexity global approximation-free control scheme with prescribed performance for unknown pure-feedback systems. Automatica 50, 1217–1226 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Psomopoulou, E., Theodorakopoulos, A., Doulgeri, Z., Rovithakis, G.A.: Prescribed performance tracking of a variable stiffness actuated robot. IEEE Trans. Control Syst. Technol. 23(5), 1914–1926 (2015)

    Article  Google Scholar 

  27. Yoo, S.J.: A-low complexity design for distributed containment control of networked pure-feedback systems and its application to fault-tolerant control. Int. J. Robust Nonlinear Control. 27(3), 363–379 (2017)

  28. Kim, B.W., Park, B.S.: Robust control for the Segway with unknown control coefficient and model uncertaintoies. Sensors 16(7), 1000 (2016)

    Article  Google Scholar 

  29. Sontag, E.D.: Mathematical Control Theory. Springer, London (1998)

    Book  MATH  Google Scholar 

  30. Jankovic, M.: Control Lyapunov–Razumikhin functions and robust stabilization of time delay systems. IEEE Trans. Automat. Control 46(7), 1048–1060 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  31. Dixon, W.E., Dawson, D.M., Zergeroglu, E.: Nonlinear Control of Wheeled Mobile Robots. Lecture Notes in Control and Information Sciences. Springer, New York (2000)

    MATH  Google Scholar 

Download references

Acknowledgements

This research was supported by the Human Resources Development (No. 20154030200860) of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government Ministry of Trade, Industry and Energy and by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2016R1D1A1B03931312 and NRF-2016R1C1B1006936).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung Jin Yoo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, B.S., Yoo, S.J. A low-complexity tracker design for uncertain nonholonomic wheeled mobile robots with time-varying input delay at nonlinear dynamic level. Nonlinear Dyn 89, 1705–1717 (2017). https://doi.org/10.1007/s11071-017-3545-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3545-7

Keywords

Navigation