Advertisement

Nonlinear Dynamics

, Volume 89, Issue 2, pp 1385–1395 | Cite as

Complexity measure by ordinal matrix growth modeling

  • J. S. Armand Eyebe FoudaEmail author
  • Wolfram Koepf
Original Paper

Abstract

We present a new approach based on the modeling of the behavior of the number of ordinal matrices derived from time series, as a function of the embedding dimension. We show that the number of distinct ordinal matrices can be used for determining whether the dynamics are regular or chaotic by means of the periodicity (\(\mu \)), quasiperiodicity (\(\alpha \)) and nonregularity (\(\lambda \)) index herein defined. We verify that \(\lambda \) behaves similarly to the Lyapunov exponent and therefore can be used for measuring complexity in time series whose underlying equations are unknown. Moreover, the combination of \(\mu \), \(\alpha \) and \(\lambda \) enables us to distinguish between deterministic and stochastic data. We thus propose the variation law of the number of ordinal matrices characterizing the random walk.

Keywords

Complexity Ordinal matrix Lyapunov exponent Time series 

Notes

Acknowledgements

This work was supported by the Alexander von Humboldt Foundation (Grant No. KAM 1133622).

References

  1. 1.
    Afsar, O., Bagei, G., Tirnakli, U.: Renormalized entropy for one dimensional discrete map: periodic and quasiperiodic route to chaos and their robustness. Eur. Phys. J. 86, 307–320 (2013)CrossRefGoogle Scholar
  2. 2.
    Amigó, J.M.: Permutation Complexity in Dynamical Systems. Springer, Berlin (2010)CrossRefzbMATHGoogle Scholar
  3. 3.
    Bandt, C., Pompe, B.: Permutation entropy: a natural complexity measure for time series. Phys. Rev. Lett. 88, 174,102 (2002)CrossRefGoogle Scholar
  4. 4.
    Barnett, W., Serletis, A.: Martingales, nonlinearity and chaos. J. Econ. Dyn. Control 24, 703–724 (2000)CrossRefzbMATHGoogle Scholar
  5. 5.
    Bian, C., Qin, C., Ma, Q.D.Y., Shen, Q.: Modified permutation-entropy analysis of heartbeat dynamics. Phys. Rev. E 85, 021,906 (2012)CrossRefGoogle Scholar
  6. 6.
    Bruzzo, A., Gesierich, B., Santi, M., Tassinari, C., Bir-baumer, N., Rubboli, G.: Permutation entropy to detect vigilance changes and preictal states from scalp EEG in epileptic patients: a preliminary study. Neurol. Sci. 29, 3–9 (2008)CrossRefGoogle Scholar
  7. 7.
    Cao, Y., Tung, W., Gao, J., Protopopescu, V., Hively, L.: Detecting dynamical changes in time series using the permutation entropy. Phys. Rev. E 70, 046,217 (2004)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Chaudhury, S., Smith, A., Anderson, B., Ghose, S., Jessen, P.: Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130141 (1963)Google Scholar
  9. 9.
    Chaudhury, S., Smith, A., Anderson, B., Ghose, S., Jessen, P.: Quantum signatures of chaos in a kicked top. Nature 461, 768771 (2009)CrossRefGoogle Scholar
  10. 10.
    Collet, P., Eckmann, J.P.: Iterated Maps on the Interval as Dynamical Systems. Birkhäeuser, Boston (1980)zbMATHGoogle Scholar
  11. 11.
    Fadlallah, B., Príncipe, J., Chen, B., Keil, A.: Weighted-permutation entropy: an improved complexity measure for time series. Phys. Rev. E 87, 022,911 (2013)CrossRefGoogle Scholar
  12. 12.
    Fouda, J.S.A.E.: Applicability of the permutation largest slope entropy to strange nonchaotic attractors. Nonlinear Dyn (2016). doi: 10.1007/s11071-016-3158-6 Google Scholar
  13. 13.
    Fouda, J.S.A.E., Koepf, W.: Efficient detection of the quasi-periodic route to chaos by the trhee-state test. Nonlinear Dyn. 78, 14771487 (2014)Google Scholar
  14. 14.
    Fouda, J.S.A.E., Koepf, W.: Detecting regular dynamics from time series using permutations slopes. Commun. Nonlinear Sci. Numer. Simul. 27, 216–227 (2015)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Fouda, J.S.A.E., Koepf, W., Jacquir, S.: The ordinal Kolmogorov–Sinai entropy: a generalized approximation. Commun. Nonlinear Sci. Numer. Simul. 46, 103–115 (2017)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Glas, L.: Introduction to controversial topics in nonlinear science: is the normal heart rate chaotic? Chaos 19, 0285,014 (2009)MathSciNetGoogle Scholar
  17. 17.
    Li, X., Cui, S., Voss, L.: Using permutation entropy to measure the electroencephalographic effects of sevoflurane. Anesthesiology 109, 448–456 (2008)CrossRefGoogle Scholar
  18. 18.
    Li, X., Ouyang, G., Richards, D.: Predictability analysis of absence seizures with permutation entropy. Epilepsy Res. 77, 70–74 (2007)CrossRefGoogle Scholar
  19. 19.
    Li, Z., Ouyang, G., Li, D., Li, X.: Characterization of the causality between spike trains with permutation conditional mutual information. Phys. Rev. E 84, 021,929 (2011)CrossRefGoogle Scholar
  20. 20.
    Martens, M., Nowicki, T.: Invariant measures for Lebesgue typical quadratic maps. Astérisque 261, 239–252 (2000)zbMATHGoogle Scholar
  21. 21.
    Sprott, J.: Chaos and Time-Series Analysis. Oxford University Press, Oxford (2003)zbMATHGoogle Scholar
  22. 22.
    Unakafov, V.A., Keller, K.: Conditional entropy of ordinal patterns. Phys. D 269, 94–102 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Young, L.S.: Entropy in Dynamical Systems. Princeton University Press, Princeton (2003)zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Department of Physics, Faculty of ScienceUniversity of Yaoundé IYaoundéCameroon
  2. 2.Institute of MathematicsUniversity of KasselKasselGermany

Personalised recommendations