Nonlinear Dynamics

, Volume 89, Issue 2, pp 1157–1171 | Cite as

Two-memristor-based Chua’s hyperchaotic circuit with plane equilibrium and its extreme multistability

  • Bocheng Bao
  • Tao Jiang
  • Guangyi Wang
  • Peipei Jin
  • Han Bao
  • Mo Chen
Original Paper


This paper presents a novel fifth-order two-memristor-based Chua’s hyperchaotic circuit, which is synthesized from an active band pass filter-based Chua’s circuit through replacing a nonlinear resistor and a linear resistor with two different memristors. This physical circuit has a plane equilibrium and therefore emerges complex phenomenon of extreme multistability. Based on the mathematical model, stability distributions of three nonzero eigenvalues in the equilibrium plane are exhibited, from which it is observed that four different stability regions with unstable saddle-focus, and stable and unstable node-focus are distributed, thereby leading to coexisting phenomenon of infinitely many attractors. Furthermore, extreme multistability depending on two-memristor initial conditions is investigated by bifurcation diagrams and Lyapunov exponent spectra and coexisting infinitely many attractors’ behavior is revealed by phase portraits and attraction basins. At last, a hardware circuit is fabricated and some experimental observations are captured to verify that extreme multistability indeed exists in the two-memristor-based Chua’s hyperchaotic circuit.


Memristive circuit Plane equilibrium Infinitely many attractor Extreme multistability 



This work was supported by the grants from the National Natural Science Foundations of China under Grant Nos. 51277017, 61601062, and 51607013 and the Natural Science Foundations of Jiangsu Province, China, under Grant No. BK20160282.


  1. 1.
    Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found. Nature 453, 80–83 (2008)CrossRefGoogle Scholar
  2. 2.
    Fitch, A.L., Yu, D., Iu, H.H., Sreeram, V.: Hyperchaos in a memristor-based modified canonical Chua’s circuit. Int. J. Bifurc. Chaos 22, 1250133 (2012)CrossRefMATHGoogle Scholar
  3. 3.
    Buscarino, A., Fortuna, L., Frasca, M., Gambuzza, L.V.: A chaotic circuit based on Hewlett-Packard memristor. Chaos 22, 023136 (2012)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Li, Q.D., Zeng, H.Z., Li, J.: Hyperchaos in a 4D memristive circuit with infinitely many stable equilibria. Nonlinear Dyn. 79, 2295–2308 (2015)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Ma, J., Chen, Z.G., Wang, Z.L., Zhang, Q.: A four-wing hyper-chaotic attractor generated from a 4-D memristive system with a line equilibrium. Nonlinear Dyn. 81, 1275–1288 (2015)CrossRefMATHGoogle Scholar
  6. 6.
    Njitacke, Z.T., Kengne, J., Fotsin, H.B., Negou, A.N., Tchiotsop, D.: Coexistence of multiple attractors and crisis route to chaos in a novel memristive diode bridge-based Jerk circuit. Chaos Solit. Fractals 91, 180–197 (2016)CrossRefMATHGoogle Scholar
  7. 7.
    Chen, M., Li, M.Y., Yu, Q., Bao, B.C., Xu, Q., Wang, J.: Dynamics of self-excited attractors and hidden attractors in generalized memristor-based Chua’s circuit. Nonlinear Dyn. 81, 215–226 (2015)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Xu, Q., Lin, Y., Bao, B.C., Chen, M.: Multiple attractors in a non-ideal active voltage-controlled memristor based Chua’s circuit. Chaos Solit. Fractals 83, 186–200 (2016)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Zhou, L., Wang, C.H., Zhou, L.L.: Generating hyperchaotic multi-wing attractor in a 4D memristive circuit. Nonlinear Dyn. 85, 2653–2663 (2016)CrossRefGoogle Scholar
  10. 10.
    Pham, V.T., Jafari, S., Vaidyanathan, S., Volos, C.K., Wang, X.: A novel memristive neural network with hidden attractors and its circuitry implementation. Sci. China Tech. Sci. 59, 358–363 (2016)CrossRefGoogle Scholar
  11. 11.
    Wu, H.G., Bao, B.C., Liu, Z., Xu, Q., Jiang, P.: Chaotic and periodic bursting phenomena in a memristive Wien-bridge oscillator. Nonlinear Dyn. 83, 893–903 (2015)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Lü, M., Wang, C.N., Tang, J., Ma, J.: Collapse of synchronization in a memristive network. Commun. Theor. Phys. 64, 659–664 (2015)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Bao, B.C., Hu, F.W., Liu, Z., Xu, J.P.: Mapping equivalent approach to analysis and realization of memristor-based dynamical circuit. Chin. Phys. B 23, 070503 (2014)CrossRefGoogle Scholar
  14. 14.
    Ahamed, A.I., Lakshmanan, M.: Nonsmooth bifurcations, transient hyperchaos and hyperchaotic beats in a memristive Murali–Lakshmanan–Chua circuit. Int. J. Bifurc. Chaos 23, 1350098 (2013)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Bao, B.C., Jiang, P., Wu, H.G., Hu, F.W.: Complex transient dynamics in periodically forced memristive Chua’s circuit. Nonlinear Dyn. 79, 2333–2343 (2015)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Yuan, F., Wang, G.Y., Wang, X.W.: Extreme multistability in a memristor-based multi-scroll hyperchaotic system. Chaos 26, 073107 (2016)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Bao, B.C., Xu, Q., Bao, H., Chen, M.: Extreme multistability in a memristive circuit. Electron. Lett. 52, 1008–1010 (2016)CrossRefGoogle Scholar
  18. 18.
    Bao, B.C., Jiang, T., Xu, Q., Chen, M., Hu, H.G., Hu, Y.H.: Coexisting infinitely many attractors in active band-pass filter-based memristive circuit. Nonlinear Dyn. 86, 1711–1723 (2016)CrossRefGoogle Scholar
  19. 19.
    Bao, B.C., Bao, H., Wang, N., Chen, M., Xu, Q.: Hidden extreme multistability in memristive hyperchaotic system. Chaos Solit. Fractals 94, 102–111 (2017)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Patel, M.S., Patel, U., Sen, A., Sethia, G.C., Hens, C., Dana, S.K.: Experimental observation of extreme multistability in an electronic system of two coupled Rössler oscillators. Phys. Rev. E 89, 022918 (2014)CrossRefGoogle Scholar
  21. 21.
    Hens, C., Dana, S.K., Feudel, U.: Extreme multistability: attractors manipulation and robustness. Chaos 25, 053112 (2015)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Pisarchik, A.N., Feudel, U.: Control of multistability. Phys. Rep. 540, 167–218 (2014)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Li, C.B., Hu, W., Sprott, J.C., Wang, X.: Multistability in symmetric chaotic systems. Eur. Phys. J. Spec. Top. 224, 1493–1506 (2015)CrossRefGoogle Scholar
  24. 24.
    Sharma, P.R., Shrimali, M.D., Prasad, A., Kuznetsov, N.V., Leonov, G.A.: Control of multistability in hidden attractors. Eur. Phys. J. Spec. Top. 224, 1485–1491 (2015)CrossRefGoogle Scholar
  25. 25.
    Morfu, S., Nofiele, B., Marquié, P.: On the use of multistability for image processing. Phys. Lett. A 367, 192–198 (2007)CrossRefMATHGoogle Scholar
  26. 26.
    Bao, B.C., Li, Q.D., Wang, N., Xu, Q.: Multistability in Chua’s circuit with two stable node-foci. Chaos 26, 043111 (2016)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Kuznetsov, A.P., Kuznetsov, S.P., Mosekilde, E., Stankevich, N.V.: Co-existing hidden attractors in a radio-physical system. J. Phys. A 48, 125101 (2015)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Chua, L.O.: The fourth element. Proc. IEEE 100, 1920–1927 (2012)CrossRefGoogle Scholar
  29. 29.
    Bao, B.C., Shi, G.D., Xu, J.P., Liu, Z., Pan, S.H.: Dynamics analysis of chaotic circuit with two memristors. Sci. China Tech. Sci. 54, 2180–2187 (2011)CrossRefMATHGoogle Scholar
  30. 30.
    Banerjee, T.: Single amplifier biquad based inductor-free Chua’s circuit. Nonlinear Dyn. 68, 565–573 (2012)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Bao, B.C., Wang, N., Chen, M., Xu, Q., Wang, J.: Inductor-free simplified Chua’s circuit only using two op-amps based realization. Nonlinear Dyn. 84, 511–525 (2016)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Adhikari, S.P., Sah, M.P., Kim, H., Chua, L.O.: Three fingerprints of memristor. IEEE Trans. Circuits Syst. I(60), 3008–3021 (2013)CrossRefGoogle Scholar
  33. 33.
    Dawson, S.P., Grebogi, C., Yorke, J.A., Kan, I., Koçak, H.: Antimonotonicity: inevitable reversals of period-doubling cascades. Phys. Lett. A 162, 249–254 (1992)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Kyprianidis, I.M., Stouboulos, I.N., Haralabidis, P.: Antimonotonicity and chaotic dynamics in a forth-order autonomous nonlinear electric circuit. Int. J. Bifurc. Chaos 10, 1903–1915 (2000)Google Scholar
  35. 35.
    Leonov, G.A., Kuznetsov, N.V., Mokaev, T.N.: Hidden attractor and homoclinic orbit in Lorenz-like system describing convective fluid motion in rotating cavity. Commu. Nonlinear Sci. Numer. Simulat. 28, 166–174 (2015)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Dudkowski, D., Jafari, S., Kapitaniak, T., Kuznetsov, N.V., Leonov, G.A., Prasad, A.: Hidden attractors in dynamical systems. Phys. Rep. 637, 1–50 (2016)Google Scholar
  37. 37.
    Ma, J., Wu, F.G., Ren, G.D., Tang, J.: A class of initials-dependent dynamical systems. Appl. Math. Comput. 298, 65–76 (2017)MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.School of Information Science and EngineeringChangzhou UniversityChangzhouChina
  2. 2.Key Laboratory of RF Circuits and Systems, Ministry of Education of China, Institute of Modern Circuits and Intelligent InformationHangzhou Dianzi UniversityHangzhouChina

Personalised recommendations