Skip to main content
Log in

Stability investigation of velocity-modulated gear system using a new computational algorithm

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

By considering the lubricant in gear system, one degree-of-freedom model is set up which incorporates the pinion’s speed and the drag torque as the excitation sources. By introducing a permissible error (\(\varepsilon \)), a new computational algorithm using double-changed time steps is proposed in order to reduce the ill-conditioning arising from the numerical stiffness of the gear system and validated by comparison with Runge–Kutta–Fehlberg integration scheme. Then, the influences of the lubricant on the vibration of the gear system are analyzed. The results obtained in this paper indicate that the proposed numerical algorithm not only improves the accuracy of the solution, but also accelerates the calculation speed of the whole system. And according to the collision feature, the contributions of the lubricant on the system are totally different with different pinion’s speed and drag torque. Next, by introducing the proposed computational algorithm into the Floquet theory, the stability analyses of the gear system are investigated under the different excitation sources, which demonstrates that the excitation sources significantly affect the operating instability regions. In practice, particular instabilities can be minimized by the proper selection of pinion’s speed and drag torque, which can be adjusted according to the working requirements in advance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

\(\delta \) :

Dynamical transmission errors

\(\dot{\delta }\) :

Relative speed

\(\ddot{\delta }\) :

Relative acceleration

C :

Nonlinear viscous damping

K :

Nonlinear stiffness

W :

Nonlinear torque

ckw :

Intermediate variables for CKW

L :

Total backlash

t :

Time in second

\(T_f\) :

Time of one excited period cycle

\(\Delta t\) :

Time interval for any given time \(t_0\)

\(\Delta t_{+k}\) :

Time interval from lubricant contact to solid contact

\(\Delta t_{-k}\) :

Time interval from solid contact to lubricant contact

\(\Delta t_{-,+}^{\max }\) :

Maximum time step for lubricant and solid contact

\(\omega _\mathrm{p}\) :

Excitation frequency

\(\zeta _{1,2}\) :

Critical viscous damping ratio of lubricant and solid

\(k_{1,2}\) :

Stiffness of lubricant and solid

\(I_\mathrm{p,g}\) :

Rotational inertia of the pinion and gear

\(I_\mathrm{eq}\) :

Equivalent mass

\(\theta _\mathrm{p,g}\) :

Rotational displacements of the pinion and gear

\(\dot{\theta }_\mathrm{p,g}\) :

Rotational velocity of the pinion and gear

\(\ddot{\theta }_\mathrm{p,g}\) :

Rotational acceleration of the pinion and gear

\(R_\mathrm{p,g}\) :

Pitch radius of the pinion and gear

\(\vartheta _\mathrm{m}\) :

Mean part of the pinion’s speed

\(\vartheta _\mathrm{p}^i\) :

Amplitude of vibratory part of the ith harmonic for the pinion’s speed

\(\varphi _i\) :

Initial phase of the ith harmonic for the pinion’s speed

\(T_\mathrm{d}\) :

Drag torque

\(\bar{T}_\mathrm{m}\) :

Mean part of the drag torque

\(\bar{T}_\mathrm{p}^j\) :

Amplitude of vibratory part of the jth harmonic for the drag torque

\(\phi _j\) :

Initial phase of the jth harmonic for the drag torque

\(T_\mathrm{m}, T_\mathrm{p}^j\) :

Intermediate variables for \(\bar{T}_\mathrm{m}, \bar{T}_\mathrm{p}^j\)

\(\varepsilon \) :

Small value defining transition area

\(\varepsilon _{1,2}\) :

Perturbation number of the relative displacement and relative velocity

\(\lambda _{1,2}\) :

Eigenvalues for the Jacobian matrix

N :

Initial resolution of the numerical solution

M :

Number of the period

P :

Poincaré map

\({[} \Pi {]}\) :

Jacobian matrix

\(E{[} \,{]}\) :

Expectation operator

\(\gamma \) :

Periods of the solution

\(a_{\pm k} ,b_{\pm k} ,c_{\pm k}\) :

Intermediate variables for \(\Delta t_{\pm k}\)

References

  1. Singh, R., Xie, H., Comparin, R.: Analysis of automotive neutral grear rattle. J. Sound Vib. 131(2), 177–196 (1989)

    Article  Google Scholar 

  2. Theodossiades, S., Natsiavas, S.: Periodic and chaotic dynamics of motor-driven gear-pair systems with backlash. Chaos Solitons Fractals 12(13), 2427–2440 (2001)

    Article  Google Scholar 

  3. Rocca, E., Russo, R.: Theoretical and experimental investigation into the influence of the periodic backlash fluctuations on the gear rattle. J. Sound Vib. 330(20), 4738–4752 (2011)

    Article  Google Scholar 

  4. Tangasawi, O., Theodossiades, S., Rahnejat, H.: Lightly loaded lubricated impacts: idle gear rattle. J. Sound Vib. 308(3), 418–430 (2007)

    Article  Google Scholar 

  5. Theodossiades, S., Tangasawi, O., Rahnejat, H.: Gear teeth impacts in hydrodynamic conjunctions promoting idle gear rattle. J. Sound Vib. 303(3), 632–658 (2007)

    Article  Google Scholar 

  6. Brancati, R., Rocca, E., Russo, R.: An analysis of the automotive driveline dynamic behaviour focusing on the influence of the oil squeeze effect on the idle rattle phenomenon. J. Sound Vib. 303(3), 858–872 (2007)

    Article  Google Scholar 

  7. Russo, R., Brancati, R., Rocca, E.: Experimental investigations about the influence of oil lubricant between teeth on the gear rattle phenomenon. J. Sound Vib. 321(3), 647–661 (2009)

    Article  Google Scholar 

  8. Barbieri, M., Lubrecht, A.A., Pellicano, F.: Behavior of lubricant fluid film in gears under dynamic conditions. Tribol. Int. 62, 37–48 (2013)

    Article  Google Scholar 

  9. Pedersen, R., Santos, I.F., Hede, I.A.: Advantages and drawbacks of applying periodic time-variant modal analysis to spur gear dynamics. Mech. Syst. Signal Process. 24(5), 1495–1508 (2010)

    Article  Google Scholar 

  10. Ma, R., Chen, Y., Cao, Q.: Research on dynamics and fault mechanism of spur gear pair with spalling defect. J. Sound Vib. 331(9), 2097–2109 (2012)

    Article  Google Scholar 

  11. Jiang, H., Liu, F.: Dynamic features of three-dimensional helical gears under sliding friction with tooth breakage. Eng. Fail. Anal. 70, 305–322 (2016)

    Article  Google Scholar 

  12. Fujimoto, T., Chikatani, Y., Kojima, J.: Reduction of idling rattle in manual transmission. SAE Technical Paper, No. 870395 (1987)

  13. Shih, S., Yruma, J., Kittredge, P.: Drivetrain noise and vibration troubleshooting. SAE Technical Paper, No. 2001-01-2809 (2001)

  14. Wang, M., Manoj, R., Zhao, W.: Gear rattle modelling and analysis for automotive manual transmissions. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 215(2), 241–258 (2001)

    Article  Google Scholar 

  15. Liu, F., Jiang, H., Zhang, H., Yu, X.: Dynamic behavior analysis of spur gears with constant & variable excitations considering sliding friction influence. J. Mech. Sci. Technol. 30(12), 5363–5370 (2016)

    Article  Google Scholar 

  16. Meisner, S., Campbell, B.: Development of gear rattle analytical simulation methodology. SAE Technical Paper, No. 951317 (1995)

  17. Kartik, V., Houser, D.R.: An investigation of shaft dynamic effects on gear vibration and noise excitations. SAE Technical Paper, No. 2003-01-1491 (2003)

  18. Kang, M.R., Kahraman, A.: Measurement of vibratory motions of gears supported by compliant shafts. Mech. Syst. Signal Process. 29(5), 391–403 (2011)

    Google Scholar 

  19. Chang-Jian, C.W.: Strong nonlinearity analysis for gear-bearing system under nonlinear suspension-bifurcation and chaos. Nonlinear Anal. Real World Appl. 11(3), 1760–1774 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Wang, K.L., Cheng, H.S.: A numerical solution to the dynamic load, film thickness, and surface temperatures in spur gears, part I: analysis. J. Mech. Des. 103(1), 177–187 (1981)

    Article  Google Scholar 

  21. Ene, N.M., Dimofte, F.: Effect of fluid film wave bearings on attenuation of gear mesh noise and vibration. Tribol. Int. 53, 108–114 (2012)

    Article  Google Scholar 

  22. Huang, K.J., Wu, M.R., Tseng, J.T.: Dynamic analyses of gear pairs incorporating the effect of time-varying lubrication damping. J. Vib. Control 17(3), 355–363 (2011)

    Article  MATH  Google Scholar 

  23. Ottewill, J.R., Neild, S.A., Wilson, R.E.: Intermittent gear rattle due to interactions between forcing and manufacturing errors. J. Sound Vib. 321(3), 913–935 (2009)

    Article  Google Scholar 

  24. He, S., Rook, T., Singh, R.: Construction of semianalytical solutions to spur gear dynamics given periodic mesh stiffness and sliding friction functions. J. Mech. Des. 130(12), 122601 (2008)

    Article  Google Scholar 

  25. Comparin, R., Singh, R.: Non-linear frequency response characteristics of an impact pair. J. Sound Vib. 134(2), 259–290 (1989)

    Article  Google Scholar 

  26. Kahraman, A., Singh, R.: Non-linear dynamics of a spur gear pair. J. Sound Vib. 142(1), 49–75 (1990)

    Article  Google Scholar 

  27. Azar, R., Crossley, F.: Digital simulation of impact phenomenon in spur gear systems. J. Manuf. Sci. Eng. 99(3), 792–798 (1977)

    Google Scholar 

  28. Bonori, G., Pellicano, F.: Non-smooth dynamics of spur gears with manufacturing errors. J. Sound Vib. 306(1), 271–83 (2007)

    Article  Google Scholar 

  29. Ma, Q., Kahraman, A.: Period-one motions of a mechanical oscillator with periodically time-varying, piecewise-nonlinear stiffness. J. Sound Vib. 284(3), 893–914 (2005)

    Article  Google Scholar 

  30. Yang, J., Peng, T., Lim, T.C.: An enhanced multi-term harmonic balance solution for nonlinear period-one dynamic motions in right-angle gear pairs. Nonlinear Dyn. 67(2), 1053–1065 (2012)

    Article  MathSciNet  Google Scholar 

  31. Shen, Y., Yang, S., Liu, X.: Nonlinear dynamics of a spur gear pair with time-varying stiffness and backlash based on incremental harmonic balance method. Int. J. Mech. Sci. 48(11), 1256–1263 (2006)

    Article  MATH  Google Scholar 

  32. Raghothama, A., Narayanan, S.: Bifurcation and chaos in geared rotor bearing system by incremental harmonic balance method. J. Sound Vib. 226(3), 469–492 (1999)

    Article  Google Scholar 

  33. Al-Shyyab, A., Kahraman, A.: Non-linear dynamic analysis of a multi-mesh gear train using multi-term harmonic balance method: sub-harmonic motions. J. Sound Vib. 279(1), 417–451 (2005)

    Article  Google Scholar 

  34. Al-Shyyab, A., Kahraman, A.: Non-linear dynamic analysis of a multi-mesh gear train using multi-term harmonic balance method: period-one motions. J. Sound Vib. 284(1), 151–172 (2005)

    Article  Google Scholar 

  35. Moradi, H., Salarieh, H.: Analysis of nonlinear oscillations in spur gear pairs with approximated modelling of backlash nonlinearity. Mech. Mach. Theory 51, 14–31 (2012)

    Article  Google Scholar 

  36. Lin, J., Parker, R.G.: Mesh stiffness variation instabilities in two-stage gear systems. J. Vib. Acoust. 124(1), 68–76 (2002)

    Article  Google Scholar 

  37. Tordion, G., Gauvin, R.: Dynamic stability of a two-stage gear train under the influence of variable meshing stiffnesses. J. Manuf. Sci. Eng. 99(3), 785–791 (1977)

    Google Scholar 

  38. Amabili, M., Rivola, A.: Dynamic analysis of spur gear pairs: steady-state response and stability of the sdof model with time-varying meshing damping. Mech. Syst. Signal Process. 11(3), 375–390 (1997)

    Article  Google Scholar 

  39. Chen, C.S., Natsiavas, S., Nelson, H.D.: Stability analysis and complex dynamics of a gear-pair system supported by a squeeze film damper. J. Vib. Acoust. 119(1), 85–88 (1997)

    Article  Google Scholar 

  40. Chang-Jian, C.W., Chang, S.M.: Bifurcation and chaos analysis of spur gear pair with and without nonlinear suspension. Nonlinear Anal. Real World Appl. 12(2), 979–989 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  41. Farshidianfar, A., Saghafi, A.: Global bifurcation and chaos analysis in nonlinear vibration of spur gear systems. Nonlinear Dyn. 75(4), 783–806 (2014)

    Article  MathSciNet  Google Scholar 

  42. Laschet, A.: Simulation of vibrations in power trains to minimise gear-rattling. In: Proceedings of EAEC Conference, pp. 139–146. Strasbourg (1989)

  43. Szadkowski, A.: Mathematical model and computer simulation of idle gear rattle. SAE Technical Paper, No. 910641 (1991)

  44. Johnson, O., Hirami, N.: Diagnosis and objective evaluation of gear rattle. SAE Technical Paper, No. 911082 (1991)

  45. Rust, A., Brandl, F., Thien, G.: Investigations into gear rattle phenomena-key parameters and their influence on gearbox noise. Inst. Mech. Eng. C 404, 113–120 (1990)

    Google Scholar 

  46. Sakai, T., Doi, Y., Yamamoto, K.I., Ogasawara, T., Narita, M.: Theoretical and experimental analysis of rattling noise of automotive gearbox. SAE Technical Paper, No. 810773 (1981)

  47. Seaman, R.L., Johnson, C.E., Hamilton, R.F.: Component inertial effects on transmission design. SAE Technical Paper, No. 841686 (1984)

  48. Brancati, R., Rocca, E., Russo, R.: A gear rattle model accounting for oil squeeze between the meshing gear teeth. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 219(9), 1075–1083 (2005)

    Article  Google Scholar 

  49. Guilbault, R., Lalonde, S., Thomas, M.: Nonlinear damping calculation in cylindrical gear dynamic modeling. J. Sound Vib. 331(9), 2110–2128 (2012)

    Article  Google Scholar 

  50. Liu, F., Jiang, H., Zhang, L., Chen, L.: Analysis vibration characteristic for helical gear under hydrodynamic conditions. Adv. Mech. Eng. 9(1), 1–9 (2017)

    Google Scholar 

  51. Liu, F.: Dynamic analysis of drag torque for spur gear pairs considering the double-sided films. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. (2016). doi:10.1177/0954406216631370

  52. Aiken, R.C.: Stiff Computation. Oxford University Press, New York (1985)

    MATH  Google Scholar 

  53. Padmanabhan, C., Barlow, R., Rook, T., Singh, R.: Computational issues associated with gear rattle analysis. J. Mech. Des. 117(1), 185–192 (1995)

    Article  Google Scholar 

  54. Khabou, M., Bouchaala, N., Chaari, F., Fakhfakh, T., Haddar, M.: Study of a spur gear dynamic behavior in transient regime. Mech. Syst. Signal Process. 25, 3089–3101 (2011)

    Article  Google Scholar 

  55. Rahnejat, H.: Multi-Body Dynamics: Vehicles, Machines and Mechanisms. J. Appl. Mech. Bury St Edmunds (1998)

  56. Zhang, Z., Chen, Y., Cao, Q.: Bifurcations and hysteresis of varying compliance vibrations in the primary parametric resonance for a ball bearing. J. Sound Vib. 350(18), 171–184 (2015)

  57. Long, X., Liu, J., Meng, G.: Nonlinear dynamics of two harmonically excited elastic structures with impact interaction. J. Sound Vib. 333(5), 1430–1441 (2014)

    Article  Google Scholar 

  58. Mailybaev, A.A., Spelsberg-Korspeter, G.: Combined effect of spatially fixed and rotating asymmetries on stability of a rotor. J. Sound Vib. 336(3), 227–239 (2015)

    Article  Google Scholar 

  59. Howard, I., Jia, S., Wang, J.: The dynamic modelling of a spur gear in mesh including friction and a crack. Mech. Syst. Signal Process. 15(5), 831–853 (2001)

    Article  Google Scholar 

  60. Wu, S., Zuo, M.J., Parey, A.: Simulation of spur gear dynamics and estimation of fault growth. J. Sound Vib. 317(3), 608–624 (2008)

    Article  Google Scholar 

  61. Liu, F., Theodossiades, S., Bergman, L.A., Vakakis, A.F., McFarland, D.M.: Analytical characterization of damping in gear teeth dynamics under hydrodynamic conditions. Mech. Mach. Theory 94, 141–147 (2015)

    Article  Google Scholar 

  62. Bellomo, P., Cricenti, F., De Vito, N., Lang, C.H., Minervini, D.: Innovative vehicle powertrain systems engineering: beating the noisy offenders in vehicle transmissions. SAE Technical Paper, No. 2000-01-0033 (2000)

Download references

Acknowledgements

The authors acknowledge the financial support from National Natural Science Foundation of China (Grant No. 51305378), Jiangsu Provincial Key Laboratory of Automotive Engineering (QC201306), China Postdoctoral Science Foundation funded Project (2016M590643), Jiangsu Provincial Science and Technology Department (BY2015057-25) and the Research Laboratory of Mechanical Vibration (MVRLAB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuhao Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, F., Zhang, L. & Yu, X. Stability investigation of velocity-modulated gear system using a new computational algorithm. Nonlinear Dyn 89, 1111–1128 (2017). https://doi.org/10.1007/s11071-017-3504-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3504-3

Keywords

Navigation