Skip to main content
Log in

Recent advances in vibration control of offshore platforms

  • Review
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Offshore platforms are widely used to explore, drill, produce, storage, and transport ocean resources and are usually subject to environmental loading, such as waves, winds, ice, and currents, which may lead to failure of deck facilities, fatigue failure of platforms, inefficiency of operation, and even discomfort of crews. In order to ensure reliability and safety of offshore platforms, it is of great significance to explore a proper way of suppressing vibration of offshore platforms. There are mainly three types of control schemes, i.e., passive control schemes, semi-active control schemes, and active control schemes, to deal with vibration of offshore platforms. This paper provides an overview of these schemes. Firstly, passive control schemes and several semi-active control schemes are briefly summarized. Secondly, some classical active control approaches, such as optimal control, robust control, and intelligent control, are briefly reviewed. Thirdly, recent advances of active control schemes with delayed feedback control, sliding model control, sampled-data control, and network-based control are deeply analyzed. Finally, some challenging issues are provided to guide future research directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wilson, J.F.: Dynamics of Offshore Structures. Wiley, Chichester (2002)

    Google Scholar 

  2. Hirdaris, S.E., Bai, W., Dessi, D., Ergin, A., Gu, X., Hermundstad, O.A., Huijsmans, R., Iijima, K., Nielsen, U.D., Parunov, J., Fonseca, N., Papanikolaou, A., Argyriadis, K., Incecik, A.: Loads for use in the design of ships and offshore structures. Ocean Eng. 78, 131–174 (2014)

    Article  Google Scholar 

  3. Ou, J., Long, X., Li, Q.S., Xiao, Y.Q.: Vibration control of steel jacket offshore platform structures with damping isolation systems. Eng. Struct. 29(7), 1525–1538 (2007)

    Article  Google Scholar 

  4. Kandasamy, R., Cui, F., Townsend, N., Foo, C.C., Guo, J., Shenoi, A., Xiong, Y.: A review of vibration control methods for marine offshore structures. Ocean Eng. 127, 279–297 (2016)

    Article  Google Scholar 

  5. Soong, T.T., Dargush, G.F.: Passive Energy Dissipation Systems in Structural Engineering. Wiley, Buffalo (1997)

    Google Scholar 

  6. Yao, J.T.P.: Concept of structural control. J. Struct. Div. 98(7), 1567–1574 (1972)

    Google Scholar 

  7. Korkmaz, S.: A review of active structural control: challenges for engineering informatics. Comput. Struct. 89(23–24), 2113–2132 (2011)

  8. Lee, H.H.: Stochastic analysis for offshore structures with added mechanical dampers. Ocean Eng. 24(5), 817–834 (1997)

    Article  Google Scholar 

  9. Li, H., Wang, S., Ji, C.: Semi-active control of wave-induced vibration for offshore platforms by use of MR damper. China Ocean Eng. 16(1), 33–40 (2002)

    Google Scholar 

  10. Abdel-Rohman, M.: Structural control of a steel jacket platform. Struct. Eng. Mech. 4(2), 125–138 (1996)

    Article  Google Scholar 

  11. Li, H.-N., He, X.-Y., Huo, L.-S.: Seismic response control of offshore platform structures with shape memory alloy dampers. China Ocean Eng. 19(2), 185–194 (2005)

    Google Scholar 

  12. Patil, K.C., Jangid, R.S.: Passive control of offshore jacket platforms. Ocean Eng. 32, 1933–1949 (2005)

    Article  Google Scholar 

  13. Golafshani, A.A., Gholizad, A.: Friction damper for vibration control in offshore steel jacket platforms. J. Constr. Steel Res. 65(1), 180–187 (2009)

    Article  Google Scholar 

  14. Moharrami, M., Tootkaboni, M.: Reducing response of offshore platforms to wave loads using hydrodynamic buoyant mass dampers. Eng. Struct. 81, 162–174 (2014)

    Article  Google Scholar 

  15. Monir, H.S., Nomani, H.: Application of lead rubber isolation systems in the offshore structures. In: Proceedings of the international multi conference of engineers and computer scientists (IMECS), Hong Kong, pp. 1523–1527 (2011)

  16. Liu, X., Li, G., Yue, Q., Oberlies, R.: Acceleration-oriented design optimization of ice-resistant jacket platforms in the Bohai Gulf. Ocean Eng. 36(17–18), 1295–1302 (2009)

    Article  Google Scholar 

  17. Xu, Y., Liu, Y., Kan, C., Shen, Z., Shi, Z.: Experimental research on fatigue property of steel rubber vibration isolator for offshore jacket platform in cold environment. Ocean Eng. 36(8), 588–594 (2009)

    Article  Google Scholar 

  18. Wang, S., Yue, Q., Zhang, D.: Ice-induced non-structure vibration reduction of jacket platforms with isolation cone system. Ocean Eng. 70(15), 118–123 (2013)

    Article  Google Scholar 

  19. Kareem, A.: Mitigation of wind induced motion of tall buildings. J. Wind Eng. Ind. Aerodyn. 11(1–3), 273–284 (1983)

    Article  Google Scholar 

  20. Alves, R.M., Batista, R.C.: Active/passive control of heave motion for TLP type of offshore platforms. In: International Offshore and Polar Engineering Conference (ISOPE), Brest, France, pp. 332–338 (1999)

  21. Wang, S., Li, H., Ji, C., Jiao, G.: Energy analysis for TMD-structure systems subjected to impact loading. China Ocean Eng. 16(3), 301–310 (2002)

    Google Scholar 

  22. Chandrasekaran, S., Bhaskar K., Lino, H., Brijith, R.: Dynamic response behaviour of multi-legged articulated tower with & without TMD. In: Proceedings of International Conference Marine Technology, Dhaka, Bangladesh, pp. 131–136 (2010)

  23. Yue, Q., Zhang, L., Zhang, W., Kärnä, T.: Mitigating ice-induced jacket platform vibrations utilizing a TMD system. Cold Reg. Sci. Technol. 56(2–3), 84–89 (2009)

    Article  Google Scholar 

  24. Abe, M., Igusa, T.: Tuned mass dampers for structures with closely spaced natural frequencies. Earthq. Eng. Struct. Dyn. 24, 247–261 (1995)

    Article  Google Scholar 

  25. Taflanidis, A.A., Angelides, D.C., Scruggs, J.T.: Robust design optimization of mass dampers for control of tension leg platforms. In: Proceedings of International Offshore and Polar Engineering Conference (ISOPE), Vancouver, Canada, pp. 92–99 (2008)

  26. Lu, J., Mei, N., Li, Y., Shi, X.: Vibration control of multi-tuned mass dampers for an offshore oil platfrom. China Ocean Eng. 16(3), 321–328 (2002)

    Google Scholar 

  27. Taflanidis, A.A., Angelides, D.C., Scruggs, J.T.: Simulation-based robust design of mass dampers for response mitigation of tension leg platforms. Eng. Struct. 31(4), 847–857 (2009)

    Article  Google Scholar 

  28. Chandrasekaran, S., Kumar, D., Ramanathan, R.: Dynamic response of tension leg platform with tuned mass dampers. J. Naval Archit. Mar. Eng. 10(2), 1813–8235 (2013)

    Article  Google Scholar 

  29. Ma, R., Wang, J., Zhao, D.: Simulation of vibration control of offshore platforms under earthquake loadings. In: Proceedings of ASME International Conference on Offshore Mechanics and Arctic Engineering (OMAE), Estoril, Portugal, pp. 1–5 (2008)

  30. Zhao, D., Cai, D.M., Ma, R.J.: Vibration control of offshore platforms using METMD system under the random ocean wave forces. In: Proceedings of International Society of Offshore and Polar Engineers (ISOPE) Pacific/Asia Mechanics Symposium. Dalian, China, pp. 60–65 (2006)

  31. Golafshani, A.A., Gholizad, A.: Passive devices for wave induced vibration control in offshore steel jacket platforms. Trans. A Civil Eng. 16(6), 443–456 (2009)

    Google Scholar 

  32. Jafarabad, A., Kashani, M., Parvar, M.R.A., Golafshani, A.A.: Hybrid damping systems in offshore jacket platforms with float-over deck. J. Constr. Steel Res. 98, 178–187 (2014)

    Article  Google Scholar 

  33. Ma, R., Zhang, H., Zhao, D.: Study on the anti-vibration devices for a model jacket platform. Mar. Struct. 23(4), 434–443 (2010)

    Article  Google Scholar 

  34. Veḷičko, J., Gaile L.: Overview of tuned liquid dampers and possible ways of oscillation damping properties improvement. In: Proceedings of 10th International Scientific and Practical Conference, Rezekne, Latvia, pp. 233–238 (2015)

  35. Vandiver, J.K., Mitome, S.: Effect of liquid storage tanks on the dynamic response of offshore platforms. Appl. Ocean Res. 1(2), 67–74 (1979)

    Article  Google Scholar 

  36. Li, H., Ma, B.: Seismic response reduction for fixed offshore platform by tuned liquid damper. China Ocean Eng. 11(2), 119–125 (1997)

    Google Scholar 

  37. Chen, X., Wang, L., Xu, J.: TLD technique for reducing ice-induced vibration on platforms. J. Cold Reg. Eng. 13(3), 139–152 (1999)

    Article  Google Scholar 

  38. Jin, Q., Li, X., Sun, N., Zhou, J., Guan, J.: Experimental and numerical study on tuned liquid dampers for controlling earthquake response of jacket offshore platform. Mar. Struct. 20(4), 238–254 (2007)

    Article  Google Scholar 

  39. Spillane, M.W., Rijken, O.R., Leverette S.J.: Vibration absorbers for deep water TLP’s. In: Proc. 16th International Offshore and Polar Engineering Conference (ISOPE), Lisbon, Portugal, pp. 210–217 (2007)

  40. Bian, X.S., Leverette, S.J., Rijken, O.R.: A TLP solution for 8000 ft water depth. In: Proceedings of ASME 2010 29th International Conference on Ocean, Offshore and Arctic Engineering, Shanghai, China, pp. 255–262 (2010)

  41. Rijken, O., Spillane, M., Leverette, S.J.: Vibration absorber technology and conceptual design of vibration absorber for TLP in ultradeep water. In: ASME 2010 29th International Conference on Ocean, Offshore and Arctic Engineering, Shanghai, China, pp. 629–638 (2010)

  42. Sakai, F., Takaeda, S., Tamaki, T.: Tuned liquid column damper-new type device for suppression of building vibrations. In: Proceedings of International Conference on Highrise Buildings, Nanjing, China, pp. 926–931 (1989)

  43. Chaiviriyawong, P., Webster, W.C., Pinkaew, T., Lukkunaprasit, P.: Simulation of characteristics of tuned liquid column damper using a potential-flow method. Eng. Struct. 29(1), 132–144 (2007)

    Article  Google Scholar 

  44. Lee, H.H., Wong, S.-H., Lee, R.-S.: Response mitigation on the offshore floating platform system with tuned liquid column damper. Ocean Eng. 33(8–9), 1118–1142 (2006)

    Article  Google Scholar 

  45. Huo, L., Li, H.: Torsionally coupled response control of offshore platform structures using CTLCD. In: Proceedings of 15th International Offshore and Polar Engineering Conference (ISOPE), Seoul, Korea, pp. 296–303 (2005)

  46. Al-Saif, K.A., Aldakkan, K.A., Foda, M.A.: Modified liquid column damper for vibration control of structures. Int. J. Mech. Sci. 53(7), 505–512 (2011)

    Article  Google Scholar 

  47. Chatterjee, T., Chakraborty, S.: Vibration mitigation of structures subjected to random wave forces by liquid column dampers. Ocean Eng. 87(1), 151–161 (2014)

    Article  Google Scholar 

  48. Lee, H.H., Juang, H.H.: Experimental study on the vibration mitigation of offshore tension leg platform system with UWTLCD. Smart Struct. Syst. 9(1), 71–104 (2012)

    Article  Google Scholar 

  49. Mousavi, S.A., Zahrai, S.M., Bargi, K.: Optimum geometry of tuned liquid column-gas damper for control of offshore jacket platform vibrations under seismic excitation. Earthq. Eng. Eng. Vib. 11(4), 579–592 (2012)

    Article  Google Scholar 

  50. Mousavi, S.A., Bargi, K., Zahrai, S.M.: Optimum parameters of tuned liquid column-gas damper for mitigation of seismic-induced vibrations of offshore jacket platforms. Struct. Control Health Monit. 20(3), 422–444 (2013)

    Article  Google Scholar 

  51. Hochrainer, M.J., Ziegler, F.: Control of tall building vibrations by sealed tuned liquid column dampers. Struct. Control Health Monit. 13(6), 980–1002 (2006)

    Article  Google Scholar 

  52. Ziegler, F.: Special design of tuned liquid column-gas dampers for the control of spatial structural vibrations. Acta Mech. 201(1), 249–267 (2008)

    Article  MATH  Google Scholar 

  53. Zeng, X., Yu, Y., Zhang, L., Liu, Q., Wu, H.: A new energy-absorbing device for motion suppression in deep-sea floating platforms. Engergies 8(1), 111–132 (2015)

    Article  Google Scholar 

  54. Pinkaew, T., Fujino, Y.: Effectiveness of semi-active tuned mass dampers under harmonic excitation. Eng. Struct. 23(7), 850–856 (2001)

    Article  Google Scholar 

  55. Spencer Jr., B.F., Dyke, S.J., Sain, M.K., Carlson, J.D.: Phenomenological model of a magnetorheological damper. J. Eng. Mech. 123(3), 230–238 (1997)

    Article  Google Scholar 

  56. Lamont, L., Chaar, L., Karkoub, M.: Design of a test rig for vibration control of oil platforms using Magnetorheological Dampers. In: Proceedings of 2nd International Energy 2030 Conference, Dhabi, UAE, pp. 291–301 (2008)

  57. Sarrafan, A., Zareh, S.H., Khayyat, A.A., Zabihollah, A.: Performance of an offshore platform with MR dampers subjected to wave. In: Proceedings of IEEE International Conference on Mechatronics (ICM), Istanbul, Turkey, pp. 242–247 (2011)

  58. Ji, C., Yin, Q.: Study on a fuzzy MR damper vibration control strategy for offshore platforms. In: Proc. ASME 26th International Conference on Offshore Mechanics and Arctic Engineering, San Diego, USA, pp. 363–368 (2007)

  59. Ji, C., Chen, M., Li, S.: Vibration control of jacekt platforms with magnetorheological damper and experimental validation. High Technol. Lett. 16(2), 189–193 (2010)

    Google Scholar 

  60. Wu, B., Shi, P., Wang, Q., Guan, X., Ou, J.: Performance of an offshore platform with MR dampers subjected to ice and earthquake. Struct. Control Health Monit. 18(6), 682–697 (2011)

    Article  Google Scholar 

  61. Wang, S.-Q., Li, N.: Semi-active vibration control for offshore platforms based on LQG method. J. Mar. Sci. Technol. 21(5), 562–568 (2013)

    Google Scholar 

  62. Sarrafan, A., Zareh, S.H., Khayyat, A.A.A., Zabihollah, A.: Neuro-fuzzy control strategy for an offshore steel jacket platform subjected to wave-induced forces using magnetorheological dampers. J. Mech. Sci. Technol. 26(4), 1179–1196 (2012)

    Article  Google Scholar 

  63. Taghikhany, T., Ariana, Sh, Mohammadzadeh, R., Babaei, S.: The effect of semi-active controller in Sirri jacket seismic vibration control under Kobe earthquake. Int. J. Mar. Sci. Eng. 3(2), 77–84 (2013)

    Google Scholar 

  64. Fischer, F.J., Liapis, S.I., Kallinderis, Y.: Mitigation of current-driven, vortex-induced vibrations of a spar platform via “SMART” thrusters. J. Offshore Mech. Arct. Eng. 126(1), 96–104 (2004)

    Article  Google Scholar 

  65. Zribi, M., Almutairi, N., Abdel-Rohman, M., Terro, M.: Nonlinear and robust control schemes for offshore steel jacket platforms. Nonlinear Dyn. 35(1), 61–80 (2004)

    Article  MATH  Google Scholar 

  66. Zhang, B.-L., Hu, Y.-H., Tang, G.-Y.: Stabilization control for offshore steel jacket platforms with actuator time-delays. Nonlinear Dyn. 70(2), 1593–1603 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  67. Suhardjo, J., Kareem, A.: Structural control of offshore platforms. In: Proceedings of 7th International Offshore and Polar Engineering Conference (ISOPE), Honolulu, USA, pp. 416–424 (1997)

  68. Nakamura, M., Kajiwara, H., Koterayama, W., Hyakudome, T.: Control system design and model experiments on thruster assisted mooring system. In: Proceedings of 7th International Offshore and Polar Engineering Conference (ISOPE), Honolulu, USA, pp. 641–648 (1997)

  69. Yamamoto, I., Matsuura, M., Yamaguchi, Y., Shimazaki, K., Tanabe, A.: Dynamic positioning system based on nonlinear programming for offshore platforms. In: Proceedings of 7th International Offshore and Polar Engineering Conference (ISOPE), Honolulu, USA, pp. 632–640 (1997)

  70. Suhardjo, J., Kareem, A.: Feedback-feedforward control of offshore platforms under random waves. Earthq. Eng. Struct. Dyn. 30, 213–235 (2001)

    Article  Google Scholar 

  71. Kawano, K.: Active control effects on dynamic response of offshore structures. In: Proceedings of 3rd International Offshore and Polar Engineering Conference (ISOPE), Singapore, pp. 494–498 (1993)

  72. Terro, M.J., Mahmoud, M.S., Abdel-Rohman, M.: Multi-loop feedback control of offshore steel jacket platforms. Comput. Struct. 70(2), 185–202 (1999)

    Article  MATH  Google Scholar 

  73. Mahadik, A.S., Jangid, R.S.: Active control of offshore jacket platforms. Int. Shipbuild. Prog. 50(4), 277–295 (2003)

    Google Scholar 

  74. Luo, M., Zhu, W.Q.: Nonlinear stochastic optimal control of offshore platforms under wave loading. J. Sound Vib. 296(4–5), 734–745 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  75. Suneja, B.P., Datta, T.K.: Active control of ALP with improved performance function. Ocean Eng. 25(10), 817–835 (1998)

    Article  Google Scholar 

  76. Yoshida, K., Suzuki, H., Nam, D.: Active control of coupled dynamic response of TLP hull and tendon. In: Proceedings of 4th International Offshore and Polar Engineering Conference (ISOPE), Osaka, Japan, pp. 98–104 (1994)

  77. Ahmad, S.K., Ahmad, S.: Active control of non-linearly coupled TLP response under wind and wave environments. Comput. Struct. 72(6), 735–747 (1999)

    Article  MATH  Google Scholar 

  78. Alves, R.M., Battista, R.C., Albrecht, C.H.: Active control for enhancing fatigue life of TLP platform and tethers. In: Proceedings of 17th International Congress Mechanics Engineering, Sao Paulo, Brazil (2003)

  79. Zhang, W.-S., Li, D.-D.: Active control of axial dynamic response of deepwater risers with linear quadratic Gaussian controllers. Ocean Eng. 109, 320–329 (2015)

    Article  Google Scholar 

  80. Li, H.-J., Hu, S.-L., Jakubiak, C.: \(H_2\) active vibration control for offshore platform subjected to wave loading. J. Sound Vib. 263(4), 709–724 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  81. Wang, W., Tang, G.-Y.: Feedback and feedforward optimal control for offshore jacket platforms. China Ocean Eng. 18(4), 515–526 (2004)

    Google Scholar 

  82. Ma, H., Tang, G.-Y., Zhao, Y.-D.: Feedforward and feedback optimal control for offshore structures subjected to irregular wave forces. Ocean Eng. 33(8–9), 1105–1117 (2006)

    Article  Google Scholar 

  83. Ma, H., Tang, G.-Y., Hu, W.: Feedforward and feedback optimal control with memory for offshore platforms under irregular wave forces. J. Sound Vib. 328(4–5), 369–381 (2009)

    Article  Google Scholar 

  84. Zhang, B.-L., Liu, Y.-J., Han, Q.-L., Tang, G.-Y.: Optimal tracking control with feedforward compensation for offshore steel jacket platforms with active mass damper mechanisms. J. Vib. Control 22(3), 695–709 (2016)

    Article  MathSciNet  Google Scholar 

  85. Zhang, B.-L., Liu, Y.-J., Ma, H., Tang, G.-Y.: Discrete feedforward and feedback optimal tracking control for offshore steel jacket platforms. Ocean Eng. 91, 371–378 (2014)

    Article  Google Scholar 

  86. Zhang, B.-L., Feng, A.-M., Li, J.: Observer-based optimal fault-tolerant control for offshore platforms. Comput. Electr. Eng. 40(7), 2204–2215 (2014)

    Article  Google Scholar 

  87. Li, H., Hu, S.-L.J.: Optimal active control of wave-induced vibration for offshore platform. China Ocean Eng. 15(1), 1–14 (2001)

    Google Scholar 

  88. Ji, C., Li, H., Wang, S.: Optimal vibration control strategy for offshore platforms. In: Proceedings of International Offshore Polar Engineering Conference (ISOPE), Kitakyushu, Japan, pp. 91–96 (2002)

  89. Yang, J.S.: Robust mixed \(H_2/H_\infty \) active control for offshore steel jacket platform. Nonlinear Dyn. 78(2), 1503–1514 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  90. Zhang, B.-L., Tang, G.-Y.: Active vibration \(H_\infty \) control of offshore steel jacket platforms using delayed feedback. J. Sound Vib. 332(22), 5662–5677 (2013)

    Article  Google Scholar 

  91. Zhang, B.-L., Ma, L., Han, Q.-L.: Sliding mode control for offshore steel jacket platforms subject to nonlinear self-excited wave force and external disturbance. Nonlinear Anal. Real World Appl. 14(1), 163–178 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  92. Zhang, B.-L., Huang, Z.-W., Han, Q.-L.: Delayed non-fragile \(H_\infty \) control for offshore steel jacket platforms. J. Vib. Control 21(5), 959–974 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  93. Zhou, Y.-J., Zhao, D.-Y.: Neural network-based active control for offshore platforms. China Ocean Eng. 17(3), 461–468 (2003)

    Google Scholar 

  94. Chang, S., Kim, D., Chang, C., Cho, S.G.: Active response control of an offshore structure under wave loads using a modified probabilistic neural network. J. Mar. Sci. Technol. 14(2), 240–247 (2009)

    Article  Google Scholar 

  95. Kim, D.H.: Neuro-control of fixed offshore structures under earthquake. Eng. Struct. 31(2), 517–522 (2009)

    Article  Google Scholar 

  96. Kim, D.H.: Application of lattice probabilistic neural network for active response control of offshore structures. Struct. Eng. Mech. 31(2), 153–162 (2009)

    Article  Google Scholar 

  97. Cui, H., Hong, M.: Adaptive inverse control of offshore jacket platform based on grey prediction. In: Proceedings of 2nd International Conference on Digital Manufacturing and Automation, Zhangjiajie, China, pp. 150–154 (2011)

  98. Li, X., Yu, X., Han, Q.-L.: Stability analysis of second-order sliding mode control systems with input-delay using Poincare map. IEEE Trans. Autom. Control 58(9), 2410–2415 (2013)

    Article  MathSciNet  Google Scholar 

  99. Zhang, B.-L., Tang, G.-Y., Ma, H.: Optimal sliding mode control with specified decay rate for offshore steel jacket platforms. China Ocean Eng. 24(3), 443–452 (2010)

    Google Scholar 

  100. Zhang, B.-L., Han, Q.-L., Zhang, X.-M., Yu, X.: Integral sliding mode control for offshore steel jacket platforms. J. Sound Vib. 331(14), 3271–3285 (2012)

    Article  Google Scholar 

  101. Zhang, X.-M., Han, Q.-L., Han, D.-S.: Effects of small time-delays on dynamic output feedback control of offshore steel jacket structures. J. Sound Vib. 330(16), 3883–3900 (2011)

    Article  Google Scholar 

  102. Zhang, B.-L., Han, Q.-L., Zhang, X.-M., Yu, X.: Sliding mode control with mixed current and delayed states for offshore steel jacket platforms. IEEE Trans. Control Syst. Technol. 22(5), 1769–1783 (2014)

    Article  Google Scholar 

  103. Nourisola, H., Ahmadi, B.: Robust adaptive sliding mode control based on wavelet kernel principal component for offshore steel jacket platforms subject to nonlinear wave-induced force. J. Vib. Control (2014). doi:10.1177/1077546314553319

  104. Nourisola, H., Ahmadi, B., Tavakoli, S.: Delayed adaptive output feedback sliding mode control for offshore platforms subject to nonlinear wave-induced force. Ocean Eng. 104, 1–9 (2015)

    Article  Google Scholar 

  105. Sakthivel, R., Santra, S., Kaviarasan, B., Park, J.H.: Finite-time sampled-data control of permanent magnet synchronous motor systems. Nonlinear Dyn. 86(3), 2081–2092 (2016)

    Article  Google Scholar 

  106. Santra, S., Sakthivel, R., Kaviarasan, B.: Dissipativity-based reliable sampled-data control with nonlinear actuator faults. J. Comput. Nonlinear Dyn. 11(6), 061006 (2016)

    Article  Google Scholar 

  107. Sakthivel, R., Selvaraj, P., Mathiyalagan, K., Park, J.H.: Robust fault-tolerant \(H_\infty \) control for offshore steel jacket platforms via sampled-data approach. J. Frankl. Inst. 352(6), 2259–2279 (2015)

    Article  Google Scholar 

  108. Sakthivel, R., Santra, S., Mathiyalagan, K., Anthoni, S.M.: Robust reliable sampled-data control for offshore steel jacket platforms with nonlinear perturbations. Nonlinear Dyn. 78(2), 1109–1123 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  109. Sivaranjani, K., Rakkiyappan, R., Lakshmanan, S., Lim, C.P.: Robust stochastic sampled-data control for offshore steel jacket platforms with non-linear perturbations. IMA J. Math. Control Inf. (2015). doi:10.1093/imamci/dnv046

  110. Zhang, B.-L., Meng, M.-M., Han, Q.-L., Zhang, X.-M.: Robust non-fragile sampled-data control for offshore steel jacket platforms. Nonlinear Dyn. 83(4), 1939–1954 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  111. Robinett, R.D., Petterson, B.J., Fahrenholtz, J.C.: Lag-stabilized force feedback damping. J. Intell. Robot. Syst. 21(3), 277–285 (1998)

    Article  MATH  Google Scholar 

  112. Zhao, Y.-Y., Xu, J.: Effects of delayed feedback control on nonlinear vibration absorber system. J. Sound Vib. 308(1–2), 212–230 (2007)

    Article  Google Scholar 

  113. Zhang, D., Han, Q.-L., Jia, X.-C.: Network-based output tracking control for a class of T-S fuzzy systems that can not be stabilized by non-delayed output feedback controllers. IEEE Trans. Cybern. 45(8), 1511–1524 (2015)

    Article  Google Scholar 

  114. Zhu, S., Han, Q.-L., Zhang, C.: Investigating the effects of time-delays on stochastic stability and designing \(l_{1}\)-gain controllers for positive discrete-time Markov jump linear systems with time-delay. Inf. Sci. 355–356, 265–281 (2016)

    Article  Google Scholar 

  115. Zhang, B.-L., Han, Q.-L.: Robust sliding mode \(H_\infty \) control using time-varying delayed states for offshore steel jacket platforms. In: Proceedings of IEEE International Symposium on Industrial Electronics (ISIE), Taipei, Taiwan, pp. 1–6 (2013)

  116. Zhang, B.-L., Han, Q.-L., Huang, Z.-W.: Pure delayed non-fragile control for offshore steel jacket platforms subject to non-linear self-excited wave force. Nonlinear Dyn. 77(3), 491–502 (2014)

    Article  MATH  Google Scholar 

  117. Peng, C., Han, Q.-L., Yue, D.: To transmit or not to transmit: a discrete event-triggered communication scheme for networked Takagi–Sugeno fuzzy systems. IEEE Trans. Fuzzy Syst. 21(1), 164–170 (2013)

    Article  Google Scholar 

  118. Zhang, X.-M., Han, Q.-L.: Event-triggered dynamic output feedback control for networked control systems. IET Control Theory Appl. 8, 226–234 (2014)

    Article  MathSciNet  Google Scholar 

  119. Zhang, X.-M., Han, Q.-L.: Event-based \(H_\infty \) filtering for sampled-data systems. Automatica 51, 55–69 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  120. Ge, X., Yang, F., Han, Q.-L.: Distributed networked control systems: a brief overview. Inf. Sci. 380, 117–131 (2017)

  121. Zhang, X.-M., Han, Q.-L., Yu, X.: Survey on recent advances in networked control systems. IEEE Trans. Ind. Inf. 12(5), 1740–1752 (2016)

    Article  Google Scholar 

  122. Zhang, X.-M., Han, Q.-L., Zhang, B.-L.: An overview and deep investigation on sampled-data-based event-triggered control and filtering for networked systems. IEEE Trans. Ind. Inf. 13(1), 4–16 (2017)

    Article  MathSciNet  Google Scholar 

  123. Santra, S., Sakthivel, R., Shi, Y., Mathiyalagan, K.: Dissipative sampled-data controller design for singular networked cascade control systems. J. Frankl. Inst. 353(14), 3386–3406 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  124. Zhang, B.-L., Han, Q.-L.: Network-based modelling and active control for offshore steel jacket platforms with TMD mechanisms. J. Sound Vib. 333(25), 6796–6814 (2014)

    Article  Google Scholar 

  125. Jiang, X., Han, Q.-L.: On \(H_\infty \) control for linear systems with interval time-varying delay. Automatica 41(12), 2099–2106 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  126. Jiang, X., Han, Q.-L.: Delay-dependent robust stability for uncertain linear systems with interval time-varying delay. Automatica 42(6), 1059–1065 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  127. Zhang, B.-L., Han, Q.-L., Zhang, X.-M.: Event-triggered \(H_\infty \) reliable control for offshore structures in network environments. J. Sound Vib. 368, 1–21 (2016)

    Article  Google Scholar 

  128. Yue, D., Tian, E., Han, Q.-L.: A delay system method for designing event-triggered controllers of networked control systems. IEEE Trans. Autom. Control 58(2), 475–481 (2013)

    Article  MathSciNet  Google Scholar 

  129. Peng, C., Han, Q.-L.: A novel event-triggered transmission scheme and \(L_2\) control co-design for sampled-data control systems. IEEE Trans. Autom. Control 58(10), 2620–2626 (2013)

    Article  MathSciNet  Google Scholar 

  130. Zhang, X.-M., Han, Q.-L.: A decentralized event-triggered dissipative control scheme for systems with multiple sensors to sample the system outputs. IEEE Trans. Cybern. 46(12), 2745–2757 (2016)

    Article  Google Scholar 

  131. Wang, Y.-L., Han, Q.-L.: Network-based fault detection filter and controller coordinated design for unmanned surface vehicles in network environments. IEEE Trans. Ind. Inf. 12(5), 1753–1765 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China under Grant 61379029, the State Foundation for Studying Abroad under Grant 20130833-0318, the Australian Research Council Discovery Project under Grants DP1096780 and DP160103567, and the Griffith University 2016 New Researcher Grant Scheme under Project No. 219128.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bao-Lin Zhang or Qing-Long Han.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, BL., Han, QL. & Zhang, XM. Recent advances in vibration control of offshore platforms. Nonlinear Dyn 89, 755–771 (2017). https://doi.org/10.1007/s11071-017-3503-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3503-4

Keywords

Navigation