Skip to main content
Log in

The effect of blade vibration on the nonlinear characteristics of rotor–bearing system supported by nonlinear suspension

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The influence of blade vibration on the nonlinear characteristics of rotor–bearing system is non-ignorable in estimating system performance. The extensive studies simplify the rotor system as lumped mass points. The influence of shaft’s bending and shear and the flexibility are usually ignored. The present paper is aim to analyze the nonlinear dynamic behavior of a continuum model. The continuum model of flexible blade–rotor–bearing coupling system is established, simplifying the shaft as Timoshenko beam. The Lagrange method is utilized to derive the differential equation of motion of system. Then, the nonlinear equations of coupling system are numerically solved using the Newmark-\(\upbeta \) method. The results obtained through the proposed model are compared with the rotor–bearing system without the blades. The effect of several parameters such as rotational speed, the damping coefficient and the length of blade on the nonlinear dynamics of rotor system have been investigated. Inclusive of the analysis methods of bifurcation diagram, three-dimensional spectral plots, time-base analysis, Poincare maps and spectral plots are used to analyze the behavior of the coupling system under different operating conditions, which exhibits rich dynamic behavior of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30

Similar content being viewed by others

Abbreviations

\(\rho _\mathrm{s}\) :

Shaft mass density

\(L_\mathrm{s}\) :

Shaft length

\(A_\mathrm{s}\) :

Cross-sectional area of the shaft

\(E_\mathrm{s}\) :

Young’s modulus of shaft

\(I_\mathrm{s}\) :

Cross-sectional area moment of inertia of shaft

\(G_\mathrm{s}\) :

Shear elastic modulus of shaft

\(J_\mathrm{p}\) :

Shaft’s polar moment of inertia

\(J_\mathrm{d}\) :

Shaft’s cross-sectional moment of inertia

\(J_\mathrm{dz}\) :

Disk’s cross-sectional moment of inertia

\(J_\mathrm{z}\) :

Disk’s polar moment of inertia

\(\rho _\mathrm{b}\) :

Blade mass density

\(L_\mathrm{b}\) :

Blade length

\(A_\mathrm{b}\) :

Cross-sectional area of the blade

\(E_\mathrm{b}\) :

Young’s modulus of blade

\(I_\mathrm{b}\) :

Cross-sectional area moment of inertia of blade

x:

Shaft’s transverse displacements with respect to the X-axis

y:

Shaft’s transverse displacements with respect to the Y-axis

\(\theta _x,\theta _y\) :

Bending angle of shaft at arbitrary position

u :

Blade displacements with respect to the \(x_\mathrm{b}\)-axis

v :

Blade displacements with respect to the \(y_\mathrm{b}\)-axis

w :

Blade displacements with respect to the \(z_\mathrm{b}\)-axis

\({{\varvec{X}}}\) :

The mode shape vector of the bending shaft respect to the X-axis

\({{\varvec{Y}}}\) :

The mode shape vector of the bending shaft respect to the Y-axis

\({\varvec{\varPhi }}\) :

The mode shape vector of the shaft torsion

\({\varvec{\varPsi }}\) :

The mode shape vector of the blade axial

\({{\varvec{V}}}\) :

The mode shape vector of the blade bending direction

\({\varvec{\eta }}, {\varvec{\xi }},{{\varvec{q}}}_{{{\varvec{u}}}} , {{\varvec{q}}}_{{{\varvec{v}}}}\) :

Generalized vector

\(\dot{\phi }\) :

Rotational speed

\(()_\mathrm{b}\) :

Blade

\(()_\mathrm{d}\) :

Disk

\(()_\mathrm{s}\) :

Shaft

\(()_\mathrm{T}\) :

Shaft torsion

References

  1. Taplak, H., Erkaya, S., İbrahim, Uzmay: Experimental analysis on fault detection for a direct coupled rotor–bearing system. Measurement 46(1), 336–344 (2013)

    Article  Google Scholar 

  2. Santos, I.F., Saracho, C.M., Smith, J.T., et al.: Contribution to experimental validation of linear and non-linear dynamic models for representing rotor–blade parametric coupled vibrations. J. Sound Vib. 271(3–5), 883–904 (2004)

    Article  Google Scholar 

  3. Shen, X.Y., Mei, Z.: Numerical and experimental analysis of nonlinear dynamics of rotor–bearing–seal system. Nonlinear Dyn. 53(1–2), 31–44 (2008)

    Article  MATH  Google Scholar 

  4. Yan, S., Dowell, E.H., Lin, B.: Effects of nonlinear damping suspension on nonperiodic motions of a flexible rotor in journal bearings. Nonlinear Dyn. 778(2), 1435–1450 (2014)

    Article  Google Scholar 

  5. Qin, Z.Y., Han, Q.K., Chu, F.L.: Analytical model of bolted disk–drum joints and its application to dynamic analysis of jointed rotor. ARCHIVE Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 228(4), 646–663 (2014)

    Article  Google Scholar 

  6. Qin, Z., Han, Q., Chu, F.: Bolt loosening at rotating joint interface and its influence on rotor dynamics. Eng. Fail. Anal. 59, 456–466 (2015)

    Article  Google Scholar 

  7. Castro, H.F.D., Cavalca, K.L., Nordmann, R.: Whirl and whip instabilities in rotor–bearing system considering a nonlinear force model. J. Sound Vib. 317(1–2), 273–293 (2008)

    Article  Google Scholar 

  8. Chang-Jian, C.W., Chen, C.K.: Chaotic response and bifurcation analysis of a flexible rotor supported by porous and non-porous bearings with nonlinear suspension. Nonlinear Anal. Real World Appl. 10(2), 1114–1138 (2009)

    Article  MATH  Google Scholar 

  9. Laha, S.K., Kakoty, S.K.: Non-linear dynamic analysis of a flexible rotor supported on porous oil journal bearings. Commun. Nonlinear Sci. Numer. Simul. 16(16), 1617–1631 (2011)

    Article  Google Scholar 

  10. Yang, L.H., Wang, W.M., Zhao, S.Q., et al.: A new nonlinear dynamic analysis method of rotor system supported by oil-film journal bearings. Appl. Math. Model. 38(21–22), 5239–5255 (2014)

    Article  MathSciNet  Google Scholar 

  11. Jing, J.P., Meng, G., Yi, S., et al.: On the non-linear dynamic behavior of a rotor–bearing system. J. Sound Vib. 274(3–5), 1031–1044 (2002)

    Google Scholar 

  12. Jing, J.P., Meng, G., Sun, Y., et al.: On the oil-whipping of a rotor–bearing system by a continuum model. Appl. Math. Model. 29(5), 461–475 (2005)

    Article  MATH  Google Scholar 

  13. Meybodi, R.R., Mohammadi, A.K., Bakhtiari-Nejad, F.: Numerical analysis of a rigid rotor supported by aerodynamic four-lobe journal bearing system with mass unbalance. Commun. Nonlinear Sci. Numer. Simul. 17(1), 454–471 (2012)

    Article  MathSciNet  Google Scholar 

  14. Li, W., Yang, Y., Sheng, D., et al.: A novel nonlinear model of rotor/bearing/seal system and numerical analysis. Mech. Mach. Theory 46(5), 618–631 (2011)

    Article  MATH  Google Scholar 

  15. Cheng, M., Meng, G., Jing, J.: Numerical and experimental study of a rotor–bearing–seal system. Mech. Mach. Theory 42(8), 1043–1057 (2007)

  16. Phadatare, H.P., Pratiher, B.: Nonlinear frequencies and unbalanced response analysis of high speed rotor–bearing systems. Proc. Eng. 144, 801–809 (2016)

    Article  Google Scholar 

  17. Xiang, L., Hu, A., Hou, L., et al.: Nonlinear coupled dynamics of an asymmetric double-disc rotor–bearing system under rub-impact and oil-film forces. Appl. Math. Model. 40(7–8), 4505–4523 (2015)

    Google Scholar 

  18. Hu, A., Hou, L., Xiang, L.: Dynamic simulation and experimental study of an asymmetric double-disk rotor–bearing system with rub-impact and oil-film instability. Nonlinear Dyn. 84(2), 641–659 (2015)

  19. Chang-Jian, C.W., Chen, C.K.: Chaos of rub-impact rotor supported by bearings with nonlinear suspension. Tribol. Int. 42(3), 426–439 (2009)

    Article  Google Scholar 

  20. Chu, F., Zhang, Z.: Periodic, quasi-periodic and chaotic vibrations of a rub-impact rotor system supported on oil film bearings. Int. J. Eng. Sci. 35(10–11), 963–973 (1997)

    Article  MATH  Google Scholar 

  21. Chang-Jian, C.W., Chen, C.K.: Non-linear dynamic analysis of rub-impact rotor supported by turbulent journal bearings with non-linear suspension. Int. J. Mech. Sci. 50(6), 1090–1113 (2008)

    Article  MATH  Google Scholar 

  22. Chang-Jian, C.W., Chen, C.K.: Couple stress fluid improve rub-impact rotor–bearing system. Nonlinear Dyn. Anal. Appl. Math. Model. 34(7), 1763–1778 (2010)

    Article  MATH  Google Scholar 

  23. Ping, L.Z., Gang, L.Y., Liang, Y.H., et al.: Nonlinear dynamic study of the elastic rotor–bearing system with rub-impact fault. J. Northeast. Univ. 23(10), 980–983 (2002)

    Google Scholar 

  24. Han, F., Guo, X.L., Gao, H.Y.: Research on coupled bending and torsion vibration of blade–rotor–bearing system with nonlinear oil-film force. Eng. Mech. 30(4), 355–359 (2013)

    Google Scholar 

  25. Wang, L., Cao, D.Q., Huang, W.: Nonlinear coupled dynamics of flexible blade–rotor–bearing systems. Tribol. Int. 43, 759–778 (2010)

    Article  Google Scholar 

  26. Wang, L., Cao, D.Q., Huang, W.: Nonlinear dynamic behavior of a blade–shaft–bearing system. Chin. J. Appl. Mech. 24(2), 169–174 (2007)

    Google Scholar 

  27. Wang, L., Cao, D.Q., Huang, W.: Effect of the blade vibration on the dynamical behaviors of a rotor–bearing system. J. Harbin Eng. Univ. 28(3), 320–325 (2007)

    Google Scholar 

Download references

Acknowledgements

The project is supported by the China Natural Science Funds (No. 51575093), Natural Science Funds of Liaoning Province (No. 2015020153)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaofeng Li.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this article.

Appendices

Appendix 1: Vectors and matrices related to the rotor system

  1. (1)

    Expression of discrete kinetic energy of shaft can be shown as follows

    $$\begin{aligned} T_{\mathrm{s}}= & {} \int _0^{L_{\mathrm{s}} } \left[ \frac{1}{2}\rho A(\dot{{\varvec{\eta }}}^{\mathrm{T}}(t){{\varvec{X}}}^{\mathrm{T}}(z){{\varvec{X}}}(z)\dot{{\varvec{\eta }}}(t)\right. \nonumber \\&+\dot{{\varvec{\xi }}}^{\mathrm{T}}(t){{\varvec{Y}}}^{\mathrm{T}}(z){{\varvec{Y}}}(z)\dot{{\varvec{\xi }}}(t)) +\frac{1}{2}J_{\mathrm{p}} \dot{\phi }^{2} \nonumber \\&+\frac{1}{2}J_{\mathrm{d}} \left( \left[ {{\varvec{X}}}^{'}(z)\dot{{\varvec{\eta }}}(t)+\frac{EI}{\kappa AG}{{\varvec{X}}}^{'''}(z)\dot{{\varvec{\eta }}}(t)\right] ^{\mathrm{T}}\left[ {{\varvec{X}}}^{'}(z)\dot{{\varvec{\eta }}}(t)\right. \right. \nonumber \\&\left. \left. +\frac{EI}{\kappa AG}{{\varvec{X}}}^{'''}(z)\dot{{\varvec{\eta }}}(t)\right] \right) \nonumber \\&+\frac{1}{2}J_{\mathrm{d}} \left[ {{\varvec{Y}}}^{'}(z)\dot{{\varvec{\xi }}}(t)+\frac{EI}{\kappa AG}{{\varvec{Y}}}^{'''}(z)\dot{{\varvec{\xi }}}(t)\right] ^{\mathrm{T}}\left[ {{\varvec{Y}}}^{'}(z)\dot{{\varvec{\xi }}}(t)\right. \nonumber \\&\left. \left. +\frac{EI}{\kappa AG}{{\varvec{Y}}}^{'''}(z)\dot{{\varvec{\xi }}}(t)\right] \right) \nonumber \\&+\frac{1}{2}J_{\mathrm{p}} \dot{\phi }\left( \left[ {{\varvec{X}}}^{'}(z)\dot{{\varvec{\eta }}}(t)+\frac{EI}{\kappa AG}{{\varvec{X}}}^{'''}(z)\dot{{\varvec{\eta }}}(t)\right] ^{\mathrm{T}}\left[ {{\varvec{Y}}}^{'}(z){\varvec{\xi }}(t)\right. \right. \nonumber \\&\left. \left. +\frac{EI}{\kappa AG}{{\varvec{Y}}}^{'''}(z){\varvec{\xi }}(t)\right] \right) \nonumber \\&-\frac{1}{2}J_{\mathrm{p}} \dot{\phi }\left( \left[ {{\varvec{X}}}^{'}(z){\varvec{\eta }}(t)+\frac{EI}{\kappa AG}{{\varvec{X}}}^{'''}(z){\varvec{\eta }}(t)\right] ^{\mathrm{T}}\left[ {{\varvec{Y}}}^{'}(z)\dot{{\varvec{\xi }}}(t)\right. \right. \nonumber \\&\left. \left. +\frac{EI}{\kappa AG}{{\varvec{Y}}}^{'''}(z)\dot{{\varvec{\xi }}}(t)\right] \right) \nonumber \\&+\frac{1}{2}I_{\mathrm{s}} \int _0^{L_{\mathrm{s}} } {\dot{{{\varvec{q}}}}_{\varvec{\theta }}^{{\varvec{T}}}} {\varvec{\varPhi }}^{{{\varvec{T}}}}{\varvec{\varPhi }} \dot{{{\varvec{q}}}}_{\varvec{\theta }} \hbox {d}z \end{aligned}$$
    (33)
  2. (2)

    Expression of discrete kinetic energy of disk can be expressed as

    $$\begin{aligned} T_{\mathrm{d}}= & {} \frac{1}{2}\dot{{\varvec{\eta }}}^{\mathrm{T}}(t)m_{\mathrm{d}} {{\varvec{X}}}^{\mathrm{T}}\left( {z_{\mathrm{d}} } \right) {{\varvec{X}}}\left( {z_{\mathrm{d}} } \right) \dot{{\varvec{\eta }}}(t)\nonumber \\&+\frac{1}{2}\dot{{\varvec{\xi }}}^{\mathrm{T}}(t)m_{\mathrm{d}} {{\varvec{Y}}}^{\mathrm{T}}\left( {z_{\mathrm{d}} } \right) {{\varvec{Y}}}\left( {z_{\mathrm{d}}} \right) \dot{{\varvec{\xi }}}(t) \nonumber \\&+\frac{1}{2}\dot{{\varvec{\eta }}}^{\mathrm{T}}(t)J_\mathrm{dz} \frac{EI}{\kappa AG}{{\varvec{X}}}^{{'''}^{\mathrm{T}}}\left( {z_{\mathrm{d}} } \right) {{\varvec{X}}}^{'}\left( {z_{\mathrm{d}} } \right) \dot{{\varvec{\eta }}}(t)\nonumber \\&+\frac{1}{2}\dot{{\varvec{\eta }}}^{\mathrm{T}}(t)J_{\mathrm{dz}} \left( \frac{EI}{\kappa AG}\right) ^{2}{{\varvec{X}}}^{{'''}^{\mathrm{T}}}\left( {z_{\mathrm{d}} } \right) {{\varvec{X}}}^{'''}\left( {z_{\mathrm{d}} } \right) \dot{{\varvec{\eta }}}(t) \nonumber \\&+\frac{1}{2}\dot{{\varvec{\xi }}}^{\mathrm{T}}(t)J_{\mathrm{dz}} {{\varvec{Y}}}^{{'}^{\mathrm{T}}}\left( {z_{\mathrm{d}} } \right) {{\varvec{Y}}}^{'}\left( {z_{\mathrm{d}} } \right) \dot{{\varvec{\xi }}}(t)\nonumber \\&+\frac{1}{2}\dot{{\varvec{\xi }}}^{\mathrm{T}}(t)J_{\mathrm{dz}} \frac{EI}{\kappa AG}{{\varvec{Y}}}^{{'}^{\mathrm{T}}}\left( {z_{\mathrm{d}} } \right) {{\varvec{Y}}}^{'''}\left( {z_{\mathrm{d}} } \right) \dot{{\varvec{\xi }}}(t) \nonumber \\&+\frac{1}{2}\dot{{\varvec{\xi }}}^{\mathrm{T}}(t)J_{\mathrm{dz}} \frac{EI}{\kappa AG}{{\varvec{Y}}}^{{'''}^{\mathrm{T}}}\left( {z_{\mathrm{d}} } \right) {{\varvec{Y}}}^{'}\left( {z_{\mathrm{d}} } \right) \dot{{\varvec{\xi }}}(t)\nonumber \\&+\frac{1}{2}\dot{{\varvec{\xi }}}^{\mathrm{T}}(t)J_{\hbox {dz}} \left( \frac{EI}{\kappa AG}\right) ^{2}{{\varvec{Y}}}^{{'''}^{\mathrm{T}}}\left( {z_{\mathrm{d}} } \right) {{\varvec{Y}}}^{'''}\left( {z_{\mathrm{d}} } \right) \dot{{\varvec{\xi }}}(t) \nonumber \\&+\frac{1}{2}\dot{{\varvec{\eta }}}^{\mathrm{T}}(t)J_{\mathrm{p}} \dot{\phi }{{\varvec{X}}}^{{'}^{\mathrm{T}}}\left( {z_{\mathrm{d}} } \right) {{\varvec{Y}}}^{'}\left( {z_{\mathrm{d}} } \right) {\varvec{\xi }}(t)\nonumber \\&+\frac{1}{2}\dot{{\varvec{\eta }}}^{\mathrm{T}}(t)J_{\mathrm{z}} \dot{\phi }\frac{EI}{\kappa AG}{{\varvec{X}}}^{{'}^{\mathrm{T}}}\left( {z_{\mathrm{d}} } \right) {{\varvec{Y}}}^{'''}\left( {z_{\mathrm{d}} } \right) {\varvec{\xi }}(t) \nonumber \\&+\frac{1}{2}\dot{{\varvec{\eta }}}^{\mathrm{T}}(t)J_\mathrm{z} \dot{\phi }\frac{EI}{\kappa AG}{{\varvec{X}}}^{{'''}^{\mathrm{T}}}\left( {z_{\mathrm{d}} } \right) {{\varvec{Y}}}^{'}\left( {z_{\mathrm{d}} } \right) {\varvec{\xi }}(t)\nonumber \\&+\frac{1}{2}\dot{{\varvec{\eta }}}^{\mathrm{T}}(t)J_\mathrm{z} \dot{\phi }\left( \frac{EI}{\kappa AG}\right) ^{2}{{\varvec{X}}}^{{'''}^{\mathrm{T}}}\left( {z_{\mathrm{d}}} \right) {{\varvec{Y}}}^{'''}\left( {z_{\mathrm{d}} } \right) {\varvec{\xi }}(t) \nonumber \\&-\frac{1}{2}{\varvec{\eta }}^{\mathrm{T}}(t)J_\mathrm{z} \dot{\phi } {{\varvec{X}}}^{{'}^{\mathrm{T}}}\left( {z_{\mathrm{d}} } \right) {{\varvec{Y}}}^{'}\left( {z_{\mathrm{d}} } \right) \dot{{\varvec{\xi }}}(t)\nonumber \\&-\frac{1}{2}{\varvec{\eta }}^{\mathrm{T}}(t)J_\mathrm{z} \dot{\phi }\frac{EI}{\kappa AG}{{\varvec{X}}}^{{'}^{\mathrm{T}}}\left( {z_{\mathrm{d}} } \right) {{\varvec{Y}}}^{'''}\left( {z_{\mathrm{d}} } \right) \dot{{\varvec{\xi }}}(t) \nonumber \\&-\frac{1}{2}{\varvec{\eta }}^{\mathrm{T}}(t)J_\mathrm{z} \dot{\phi }\frac{EI}{\kappa AG}{{\varvec{X}}}^{{'''}^{\mathrm{T}}}\left( {z_{\mathrm{d}} } \right) {{\varvec{Y}}}^{'}\left( {z_{\mathrm{d}} } \right) \dot{{\varvec{\xi }}}(t)\nonumber \\&-\frac{1}{2}{\varvec{\eta }}^{\mathrm{T}}(t)J_\mathrm{z} \dot{\phi }\left( \frac{EI}{\kappa AG}\right) ^{2}{{\varvec{X}}}^{{'''}^{\mathrm{T}}}\left( {z_{\mathrm{d}} } \right) {{\varvec{Y}}}^{'''}\left( {z_{\mathrm{d}} } \right) \dot{{\varvec{\xi }}}(t)\nonumber \\ \end{aligned}$$
    (34)
  3. (3)

    Expression of discrete potential energy of shaft can be written as

    $$\begin{aligned} U_{\mathrm{s}}= & {} \frac{1}{2}\int _0^{L_\mathrm{s} } \left\{ EI([{{\varvec{X}}}^{''}(z){\varvec{\eta }}(t)]^{\mathrm{T}}[{{\varvec{X}}}^{''}(z){\varvec{\eta }}(t)]\right. \nonumber \\&\left. +[{{\varvec{Y}}}^{''}(z){\varvec{\xi }}(t)]^{\mathrm{T}}[{{\varvec{Y}}}^{''}(z){\varvec{\xi }}(t)]) \right. \nonumber \\&\left. +\kappa GA\left( \left[ \frac{EI}{\kappa AG}{{\varvec{X}}}^{'''}(z){\varvec{\eta }}(t)\right] ^{\mathrm{T}}\left[ \frac{EI}{\kappa AG}{{\varvec{X}}}^{'''}(z){\varvec{\eta }}(t)\right] \right. \right. \nonumber \\&\left. \left. +\left[ \frac{EI}{\kappa AG}{{\varvec{Y}}}^{'''}(z){\varvec{\xi }}(t)\right] ^{\mathrm{T}}\left[ \frac{EI}{\kappa AG}{{\varvec{Y}}}^{'''}(z){\varvec{\xi }}(t)\right] \right) \right\} \hbox {d}z \nonumber \\= & {} \frac{1}{2}\int _0^{L_\mathrm{s} } \left\{ {{\varvec{q}}}_{\varvec{\theta }}^{\mathrm{T}} G_\mathrm{s} J_\mathrm{s} {\Phi }'^{\mathrm{T}}{\Phi }'{{\varvec{q}}}_\theta +{\varvec{\eta }}^{\mathrm{T}}(t)EI{{\varvec{X}}}^{{''}^{\mathrm{T}}}(z){{\varvec{X}}}^{''}(z){\varvec{\eta }}(t)\right. \nonumber \\&\left. +{\varvec{\xi }}^{\mathrm{T}}(t)EI{{\varvec{Y}}}^{{''}^{\mathrm{T}}}(z){{\varvec{Y}}}^{''}(z){\varvec{\xi }}(t) \right. \nonumber \\&\left. +{\varvec{\eta }}^{\mathrm{T}}(t)\frac{(EI)^{2}}{\kappa AG}{{\varvec{X}}}^{{'''}^{\mathrm{T}}}(z){{\varvec{X}}}^{'''}(z){\varvec{\eta }}(t)\right. \nonumber \\&\left. +{\varvec{\xi }}^{\mathrm{T}}(t)\frac{(EI)^{2}}{\kappa AG}{{\varvec{Y}}}^{{'''}^{\mathrm{T}}}(z){{\varvec{Y}}}^{'''}(z){\varvec{\xi }}(t) \right\} \hbox {d}z \end{aligned}$$
    (35)
  4. (4)

    The specific meaning of each parameter in the vibration differential equation of rotor

    $$\begin{aligned} {{\varvec{M}}}_{\mathrm{r}}= & {} \left[ {{\begin{array}{ccc} \mathbf{M}_{\mathrm{s}1} +\mathbf{M}_{\mathrm{d}1} &{} {\mathbf{0}}&{} {\mathbf{0}} \\ {\mathbf{0}}&{} \mathbf{M}_{\mathrm{s}2} +{\mathbf{M}}_{\mathrm{d}2} &{} {\mathbf{0}} \\ {\mathbf{0}}&{} {\mathbf{0}}&{} {{\mathbf{M}}_{\varvec{\uptheta }} } \\ \end{array} }} \right] \nonumber \\ {{\varvec{C}}}_{\mathrm{r}}= & {} \left[ {{\begin{array}{ccc} {{{\varvec{C}}}_{\mathrm{s}1} +{{\varvec{C}}}_{\mathrm{d}1} }&{} 0&{} 0 \\ 0&{} {{{\varvec{C}}}_{\mathrm{s}2} +C_{\mathrm{d}2} }&{} 0 \\ 0&{} 0&{} {{{\varvec{C}}}_{\varvec{\uptheta }} } \\ \end{array} }} \right] \nonumber \\ {{\varvec{G}}}_{\mathrm{r}}= & {} \left[ {{\begin{array}{ccc} 0&{} {{\mathbf{G}}_{\mathrm{s}1} +{\mathbf{G}}_{\mathrm{d}1} }&{} 0 \\ {{\mathbf{G}}_{\mathrm{s}2} +{\mathbf{G}}_{\mathrm{d}2} }&{} 0&{} 0 \\ 0&{} 0&{} 0 \\ \end{array} }} \right] \nonumber \\ {{\varvec{K}}}_{\mathrm{r}}= & {} \left[ {{\begin{array}{ccc} {{\mathbf{K}}_{\mathrm{s}1} }&{} 0&{} 0 \\ 0&{} {{\mathbf{K}}_{\mathrm{s}2} }&{} 0 \\ 0&{} 0&{} {{\mathbf{K}}_{\varvec{\uptheta }} } \\ \end{array} }} \right] \nonumber \\ {{\varvec{M}}}_{\mathrm{s}1}= & {} \int _0^{L_{\mathrm{s}} } [\rho A{{\varvec{X}}}^{\mathrm{T}}(z){{\varvec{X}}}(z)+J_{\mathrm{d}}{{\varvec{X}}}^{{'}^{\mathrm{T}}}(z){{\varvec{X}}}^{'}(z)\nonumber \\&+J_{\mathrm{d}} \frac{EI}{\kappa AG}{{\varvec{X}}}^{{'}^{\mathrm{T}}}(z){{\varvec{X}}}^{'''}(z) \nonumber \\&+J_{\mathrm{d}} \frac{EI}{\kappa AG}{{\varvec{X}}}^{{'''}^{\mathrm{T}}}(z){{\varvec{X}}}^{'}(z)\nonumber \\&+J_{\mathrm{d}} \left( \frac{EI}{\kappa AG}\right) ^{2}{{\varvec{X}}}^{{'''}^{\mathrm{T}}}(z){{\varvec{X}}}^{'''}(z)]\hbox {d}z \end{aligned}$$
    (36)
    $$\begin{aligned} {{\varvec{M}}}_{\mathrm{s}2}= & {} \int _0^{L_{\mathrm{s}} } \left[ \rho A{{\varvec{Y}}}^{\mathrm{T}}(z){{\varvec{Y}}}(z)+J_{\mathrm{d}}{{\varvec{Y}}}^{{'}^{\mathrm{T}}}(z){{\varvec{Y}}}^{'}(z)\right. \nonumber \\&\left. +J_{\mathrm{d}} \frac{EI}{\kappa AG}{{\varvec{Y}}}^{{'}^{\mathrm{T}}}(z){{\varvec{Y}}}^{'''}(z)\right] \nonumber \\&+J_{\mathrm{d}} \frac{EI}{\kappa AG}{{\varvec{Y}}}^{{'''}^{\mathrm{T}}}(z){{\varvec{Y}}}^{'}(z)\nonumber \\&+J_{\mathrm{d}} \left( \frac{EI}{\kappa AG}\right) ^{2}{{\varvec{Y}}}^{{'''}^{\mathrm{T}}}(z){{\varvec{Y}}}^{'''}(z)\hbox {d}z \end{aligned}$$
    (37)
    $$\begin{aligned} {M}_\theta= & {} I_{\mathrm{s}} \int _0^{L_{\mathrm{s}}} {{\varvec{\varPhi }}^{\mathrm{T}}{\varvec{\varPhi }}} \hbox {d}z \end{aligned}$$
    (38)
    $$\begin{aligned} {{\varvec{G}}}_{\mathrm{s}1}= & {} \int _0^{L_{\mathrm{s}} } \left[ J_{\mathrm{p}} {{\varvec{X}}}^{{'}^{\mathrm{T}}}(z){{\varvec{Y}}}^{'}(z)\right. \nonumber \\&\left. +J_{\mathrm{p}} \frac{EI}{\kappa AG}{{\varvec{X}}}^{{'}^{\mathrm{T}}}(z){{\varvec{Y}}}^{'''}(z)\right. \nonumber \\&\left. +J_{\mathrm{p}} \frac{EI}{\kappa AG}{{\varvec{X}}}^{{'''}^{\mathrm{T}}}(z){{\varvec{Y}}}^{'}(z)\right. \nonumber \\&\left. +J_{\mathrm{p}} \left( \frac{EI}{\kappa AG}\right) ^{2}{{\varvec{X}}}^{{'''}^{\mathrm{T}}}(z){{\varvec{Y}}}^{'''}(z)\right] \hbox {d}z \end{aligned}$$
    (39)
    $$\begin{aligned} {{\varvec{G}}}_{\mathrm{s}2}= & {} \int _0^{L_{\mathrm{s}} } \left[ -J_{\mathrm{p}} \left( \frac{EI}{\kappa AG}\right) ^{2}{{\varvec{Y}}}^{{'''}^{\mathrm{T}}}(z){{\varvec{X}}}^{'''}(z)\right. \nonumber \\&\left. -J_{\mathrm{p}} \frac{EI}{\kappa AG}{{\varvec{Y}}}^{{'''}^{\mathrm{T}}}(z){{\varvec{X}}}^{'}(z)\right. \nonumber \\&\left. -J_{\mathrm{p}} \frac{EI}{\kappa AG}{{\varvec{Y}}}^{{'}^{\mathrm{T}}}(z){{\varvec{X}}}^{'''}(z)\right. \nonumber \\&\left. -J_{\mathrm{p}} {{\varvec{Y}}}^{{'}^{\mathrm{T}}}(z){{\varvec{X}}}^{'}(z)\right] \hbox {d}z \end{aligned}$$
    (40)
    $$\begin{aligned} {{\varvec{M}}}_{\mathrm{d}1}= & {} m_{\mathrm{d}} {{\varvec{X}}}^{\mathrm{T}}\left( {z_{\mathrm{d}} } \right) {{\varvec{X}}}\left( {z_{\mathrm{d}} } \right) +J_{\mathrm{d}} {{\varvec{X}}}^{{'}^{\mathrm{T}}}\left( {z_{\mathrm{d}} } \right) {{\varvec{X}}}^{'}\left( {z_{\mathrm{d}} } \right) \nonumber \\&+J_{\mathrm{d}} \frac{EI}{\kappa AG}{{\varvec{X}}}^{{'}^{\mathrm{T}}}\left( {z_{\mathrm{d}} } \right) {{\varvec{X}}}^{'''}\left( {z_{\mathrm{d}} } \right) \nonumber \\&+J_{\mathrm{d}} \frac{EI}{\kappa AG}{{\varvec{X}}}^{{'''}^{\mathrm{T}}}\left( {z_{\mathrm{d}} } \right) {{\varvec{X}}}^{'}\left( {z_{\mathrm{d}} } \right) \nonumber \\&+J_{\mathrm{d}} \left( \frac{EI}{\kappa AG}\right) ^{{2}}{{\varvec{X}}}^{{'''}^{\mathrm{T}}}\left( {z_{\mathrm{d}} } \right) {{\varvec{X}}}^{'''}\left( {z_{\mathrm{d}} } \right) \end{aligned}$$
    (41)
    $$\begin{aligned} {{\varvec{M}}}_{\mathrm{d}2}= & {} m_{\mathrm{d}} {{\varvec{Y}}}^{\mathrm{T}}\left( {z_{\mathrm{d}} } \right) {{\varvec{Y}}}\left( {z_{\mathrm{d}} } \right) +J_{\mathrm{d}} {{\varvec{Y}}}^{{'}^{\mathrm{T}}}\left( {z_{\mathrm{d}} } \right) {{\varvec{Y}}}^{'}\left( {z_{\mathrm{d}} } \right) \nonumber \\&+J_{\mathrm{d}} \frac{EI}{\kappa AG}{{\varvec{Y}}}^{{'}^{\mathrm{T}}}\left( {z_{\mathrm{d}} } \right) {{\varvec{Y}}}^{'''}\left( {z_{\mathrm{d}} } \right) \nonumber \\&+J_{\mathrm{d}} \frac{EI}{\kappa AG}{{\varvec{Y}}}^{{'''}^{\mathrm{T}}}\left( {z_{\mathrm{d}} } \right) {{\varvec{Y}}}^{'}\left( {z_{\mathrm{d}} } \right) \nonumber \\&+J_{\mathrm{d}} \left( \frac{EI}{\kappa AG}\right) ^{\hbox {2}}{{\varvec{Y}}}^{{'''}^{\mathrm{T}}}\left( {z_{\mathrm{d}} } \right) {{\varvec{Y}}}^{'''}\left( {z_{\mathrm{d}} } \right) \end{aligned}$$
    (42)
    $$\begin{aligned} {{\varvec{G}}}_{\mathrm{d}1}= & {} J_{\mathrm{z}} \frac{EI}{\kappa AG}{{\varvec{X}}}^{{'''}^{\mathrm{T}}}\left( {z_{\mathrm{d}} } \right) {{\varvec{Y}}}^{'}\left( {z_{\mathrm{d}} } \right) \nonumber \\&+J_{\mathrm{z}} \left( \frac{EI}{\kappa AG}\right) ^{{2}}{{\varvec{X}}}^{{'''}^{\mathrm{T}}}\left( {z_{\mathrm{d}} } \right) {{\varvec{Y}}}^{'''}\left( {z_{\mathrm{d}} } \right) \nonumber \\&+J_\mathrm{z} {{\varvec{X}}}^{{'}^{\mathrm{T}}}\left( {z_{\mathrm{d}} } \right) {{\varvec{Y}}}^{'}\left( {z_{\mathrm{d}} } \right) \nonumber \\&+J_{\mathrm{z}} \frac{EI}{\kappa AG}{{\varvec{X}}}^{{'}^{\mathrm{T}}}\left( {z_{\mathrm{d}} } \right) {{\varvec{Y}}}^{'''}\left( {z_{\mathrm{d}} } \right) \end{aligned}$$
    (43)
    $$\begin{aligned} {{\varvec{G}}}_{\mathrm{d}2}= & {} -J_{\mathrm{z}} \left( \frac{EI}{\kappa AG}\right) ^{2}{{\varvec{Y}}}^{{'''}^{\mathrm{T}}}\left( {z_{\mathrm{d}} } \right) {{\varvec{X}}}^{'''}\left( {z_{\mathrm{d}} } \right) \nonumber \\&-J_{\mathrm{z}} \frac{EI}{\kappa AG}{{\varvec{Y}}}^{{'''}^{\mathrm{T}}}\left( {z_{\mathrm{d}} } \right) {{\varvec{X}}}^{'}\left( {z_{\mathrm{d}} } \right) \nonumber \\&-J_{\mathrm{z}} \frac{EI}{\kappa AG}{{\varvec{Y}}}^{{'}^{\mathrm{T}}}\left( {z_{\mathrm{d}} } \right) {{\varvec{X}}}^{'''}\left( {z_{\mathrm{d}} } \right) \nonumber \\&-J_{\mathrm{z}} {{\varvec{Y}}}^{{'}^{\mathrm{T}}}\left( {z_{\mathrm{d}} } \right) {{\varvec{X}}}^{'}\left( {z_{\mathrm{d}} } \right) \end{aligned}$$
    (44)
    $$\begin{aligned} {{\varvec{K}}}_{\mathrm{s}1}= & {} \int _0^{L_{\mathrm{s}} } \left[ EI{{\varvec{X}}}^{{''}^{\mathrm{T}}}(z){{\varvec{X}}}^{''}(z)\right. \nonumber \\&\left. +\left( \frac{EI}{\kappa AG}\right) ^{2}{{\varvec{X}}}^{{'''}^{\mathrm{T}}}(z){{\varvec{X}}}^{'''}(z)\right] \hbox {d}z \end{aligned}$$
    (45)
    $$\begin{aligned} {{\varvec{K}}}_{\mathrm{s}2}= & {} \int _0^{L_{\mathrm{s}} } \left[ EI{{\varvec{Y}}}^{{''}^{\mathrm{T}}}(z){{\varvec{Y}}}^{''}(z)\right. \nonumber \\&\left. +\left( \frac{EI}{\kappa AG}\right) ^{2}{{\varvec{Y}}}^{{'''}^{\mathrm{T}}}(z){{\varvec{Y}}}^{'''}(z)\right] \hbox {d}z \end{aligned}$$
    (46)
    $$\begin{aligned} {{\varvec{K}}}_{\varvec{\theta }}= & {} G_{\mathrm{s}} J_{\mathrm{s}} \int _0^{L_{\mathrm{s}} } {\varvec{\varPhi }}{{'}^{\mathrm{T}}}{\varvec{\varPhi }}^{'} \hbox {d}z \end{aligned}$$
    (47)

Appendix 2: Vectors and matrices related to the blade

  1. (1)

    Expression of discrete kinetic energy of \(i^{\mathrm{th}}\) blade can be shown as follows

    $$\begin{aligned} T_{\mathrm{b}}= & {} \frac{1}{2}\rho _{\mathrm{b}} A_{\mathrm{b}} \int _0^{L_{\mathrm{b}} } {\dot{{\varvec{\eta }}}^{\mathbf{T}}{{\varvec{X}}}^{\mathbf{T}}\left( {z_{\mathrm{d}} } \right) {{\varvec{X}}}\left( {z{ }_{\mathrm{d}}} \right) \dot{{\varvec{\eta }}}} \nonumber \\&+\dot{{\varvec{\xi }}}^{\mathbf{T}}{{\varvec{Y}}}^{\mathbf{T}}\left( {z_{\mathrm{d}} } \right) {{\varvec{Y}}}^{\mathbf{T}}\left( {z_{\mathrm{d}} } \right) \dot{{\varvec{\xi }} }+\dot{{{\varvec{q}}}}_\mathbf{u}^{\mathbf{T}} {\varvec{\varPsi }}^{\mathbf{T}}{\varvec{\varPsi }} \dot{{{\varvec{q}}}}_\mathbf{u}\nonumber \\&+\dot{{{\varvec{q}}}}_\mathbf{u}^{\mathbf{T}} {\varvec{\varPsi }} ^{\mathbf{T}}{\varvec{\varPsi }} \dot{{{\varvec{q}}}}_{{{\varvec{u}}}} +\dot{{{\varvec{q}}}}_\mathbf{v}^{\mathbf{T}} {{\varvec{V}}}^{\mathbf{T}}{{\varvec{V}}}\dot{{{\varvec{q}}}}_\mathbf{v}\nonumber \\&+\dot{{{\varvec{q}}}}_{\varvec{\uptheta }}^{\mathbf{T}} \left( {R+x} \right) ^{2}{\varvec{\varPhi }}^{\mathbf{T}}{\varvec{\varPhi }} \dot{{{\varvec{q}}}}_{\varvec{\theta }} +{{\varvec{q}}}_\mathbf{u}^{\mathbf{T}} \dot{\psi }^{2}{\varvec{\varPsi }}^{\mathbf{T}}{\varvec{\varPsi }} {{\varvec{q}}}_{{{\varvec{u}}}} \nonumber \\&+{{\varvec{q}}}_{{\varvec{v}}}^{\mathbf{T}} \dot{\psi }^{2}{{\varvec{V}}}^{\mathbf{T}}{{\varvec{V}}}{{\varvec{q}}}_\mathbf{v} +{{\varvec{q}}}_{\varvec{\theta }}^{\mathbf{T}} \left( {R+x} \right) ^{2}\dot{\psi }^{2}{\varvec{\varPhi }}^{\mathbf{T}}{\varvec{\varPhi }} {{\varvec{q}}}_{\varvec{\theta }}\nonumber \\&-2\dot{{\varvec{\eta }}}^{\mathbf{T}}{{\varvec{X}}}^{\mathbf{T}}{{\varvec{V}}}\sin \psi \dot{{{\varvec{q}}}}_{{{\varvec{v}}}} \nonumber \\&+2\dot{{{\varvec{q}}}}_{\mathbf{v}}^{\mathbf{T}} \left( {R+x} \right) {{\varvec{V}}}^{\mathbf{T}}{\varvec{\varPhi }} \dot{{\varvec{q}}}_{\varvec{\theta }} +2\dot{{\varvec{\eta }}}^{\mathbf{T}}{{\varvec{X}}}^{\mathbf{T}}\left( {z_{\mathrm{d}} } \right) {\varvec{\varPsi }} \cos \psi \dot{{{\varvec{q}}}}_{{\varvec{u}}}\nonumber \\&+2\dot{{\varvec{\xi }}}^{\mathbf{T}}{{\varvec{Y}}}^{\mathbf{T}}\left( {z_{\mathrm{d}} } \right) {\varvec{\varPsi }} \sin \psi \dot{{{\varvec{q}}}}_{{\varvec{u}}}\nonumber \\&-2\dot{{\varvec{\eta }}}^{\mathbf{T}}\left( {R+x} \right) {{\varvec{X}}}^{\mathbf{T}}\left( {z_{\mathrm{d}} } \right) {\varvec{\varPhi }} \sin \psi \dot{{{\varvec{q}}}}_{\varvec{\theta }} \nonumber \\&+2\dot{{\varvec{\xi }}}^{\mathbf{T}}\left( {R+x} \right) {{\varvec{Y}}}^{\mathbf{T}}\left( {z_{\mathrm{d}} } \right) {\varvec{\varPhi }} \cos \psi \dot{{{\varvec{q}}}}_{\varvec{\theta }} \nonumber \\&+\dot{{\varvec{\eta }}}^{\mathbf{T}}\left( {R+x} \right) ^{2}\left\{ \left[ {{{\varvec{X}}}^{'}\left( {z_{\mathrm{d}} } \right) +\frac{EI}{\kappa GA}{{\varvec{X}}}^{'''}\left( {z_{\mathrm{d}} } \right) } \right] ^{\mathrm{T}}\right. \nonumber \\&\left. \left[ {{{\varvec{X}}}^{'}\left( {z_{\mathrm{d}} } \right) +\frac{EI}{\kappa GA}{{\varvec{X}}}^{'''}\left( {z_{\mathrm{d}} } \right) } \right] \right\} \dot{{\varvec{\eta }}}\nonumber \\&-2\dot{{{\varvec{q}}}}_\mathbf{u}^{\mathbf{T}} \dot{\psi }{\varvec{\varPsi }}^{\mathbf{T}}{{\varvec{V}}}{{\varvec{q}}}_{{\varvec{v}}} +2\dot{{{\varvec{q}}}}_{{\varvec{v}}}^\mathbf{T} \dot{\psi }{{\varvec{V}}}^{\mathbf{T}}{\varvec{\varPsi }} {{\varvec{q}}}_{{\varvec{u}}}\nonumber \\&-2\dot{{\varvec{\eta }}}^{\mathbf{T}}\dot{\psi }{{\varvec{X}}}^{\mathbf{T}}\left( {z_{\mathrm{d}} } \right) {\varvec{\varPsi }} \sin \psi {{\varvec{q}}}_{{\varvec{u}}} \nonumber \\&-2\dot{{\varvec{\eta }}}^{\mathbf{T}}\dot{\psi }{{\varvec{X}}}^{\mathbf{T}}\left( {z_{\mathrm{d}} } \right) {{\varvec{V}}}\,\cos \psi {{\varvec{q}}}_{{\varvec{v}}} \nonumber \\&+2\dot{{\varvec{\xi }}}^{\mathbf{T}}\dot{\psi }{{\varvec{Y}}}^{\mathbf{T}}\left( {z_{\mathrm{d}} } \right) {\varvec{\varPsi }} \cos {\psi } {{\varvec{q}}}_{{\varvec{u}}} -2\dot{{\varvec{\xi }}}^{\mathbf{T}}\dot{\psi }{{\varvec{Y}}}^{\mathbf{T}}\left( {z_{\mathrm{d}} } \right) {{\varvec{V}}}\sin \psi {{\varvec{q}}}_{{\varvec{v}}}\nonumber \\&-2\dot{{\varvec{\eta }}}^{\mathbf{T}}\dot{\psi }\left( {R+x} \right) {{\varvec{X}}}^{\mathbf{T}}{\varvec{\varPhi }} \cos {\psi } {{\varvec{q}}}_{\varvec{\theta }}\nonumber \\&-2\dot{{\varvec{\xi }}}^{\mathbf{T}}\dot{\psi }\left( {R+x} \right) {{\varvec{Y}}}^{\mathbf{T}}\left( {z_{\mathrm{d}} } \right) {\varvec{\varPhi }} \sin \psi {{\varvec{q}}}_{\varvec{\theta }}\nonumber \\&+4\dot{{{\varvec{q}}}}_{\varvec{\theta }}^{\mathbf{T}} \dot{\psi }\left( {R+x} \right) {\varvec{\varPhi }} ^{\mathbf{T}}{\varvec{\varPsi }} {{\varvec{q}}}_{{\varvec{u}}} +2\dot{{\varvec{\xi }}}^{\mathbf{T}}{{\varvec{Y}}}^{\mathbf{T}}\left( {z_{\mathrm{d}} } \right) {{\varvec{V}}}\,\cos \psi \dot{{{\varvec{q}}}}_{{\varvec{v}}}\nonumber \\ \end{aligned}$$
    (48)
  2. (2)

    Expression of discrete kinetic energy of \(i^{th}\) blade can be expressed as

    $$\begin{aligned} U_{\mathrm{b}}= & {} \frac{1}{2}E_{\mathrm{b}} A_{\mathrm{b}} \int _0^{L_{\mathrm{b}} } {{{\varvec{q}}}_{\mathrm{u}}^{\mathbf{T}} {\varvec{\varPsi }}^{{'}^{\mathbf{T}}}{\varvec{\varPsi }}^{'}{{\varvec{q}}}_{{\varvec{u}}} \hbox {d}x} \nonumber \\&+\frac{1}{2}E_{\mathrm{b}} I_{\mathrm{b}} \int _0^{L_{\mathrm{b}} } {{{\varvec{q}}}_{{\varvec{v}}}^{\mathbf{T}} {{\varvec{V}}}^{{''}^{\mathbf{T}}}{{\varvec{V}}}^{''}{{\varvec{q}}}_{{\varvec{v}}} } \hbox {d}x \nonumber \\&+\frac{1}{4}{{\varvec{q}}}_{{\varvec{v}}}^{\mathbf{T}} \rho _{\mathrm{b}} A_{\mathrm{b}} \dot{\psi }^{2}\int _0^{L_{\mathrm{b}} } \left[ L_{\mathrm{b}}^2 -x^{2}\right. \nonumber \\&\left. +2R\left( {L_{\mathrm{b}} -x} \right) \right] {{\varvec{V}}}^{{'}^{\mathbf{T}}}{{\varvec{V}}}^{'} \hbox {d}x{{\varvec{q}}}_{{\varvec{v}}} \end{aligned}$$
    (49)
  3. (3)

    The specific meaning of each transformation matrix of blade can be obtained as following

    $$\begin{aligned} {{\varvec{A}}}_\mathbf{0}= & {} \left[ {{\begin{array}{ccc} {\cos \theta _{\mathrm{T}} }&{} {-\sin \theta _{\mathrm{T}} }&{} 0 \\ {\sin \theta _{\mathrm{T}} }&{} {\cos \theta _{\mathrm{T}} }&{} 0 \\ 0&{} 0&{} 1 \\ \end{array} }} \right] \\ {{\varvec{A}}}_\mathbf{1}= & {} \left[ {{\begin{array}{ccc} {\cos \psi }&{} {-\sin \psi }&{} 0 \\ {\sin \psi }&{} {\cos \psi }&{} 0 \\ 0&{} 0&{} 1 \\ \end{array} }} \right] \\ {{\varvec{A}}}_\mathbf{2}= & {} \left[ {{\begin{array}{ccc} 1&{} 0&{} 0 \\ 0&{} {\cos \theta _y }&{} {-\sin \theta _y } \\ 0&{} {\sin \theta _y }&{} {\cos \theta _y } \\ \end{array} }} \right] \\ {{\varvec{A}}}_3= & {} \left[ {{\begin{array}{ccc} {\cos \theta _x }&{} 0&{} {\sin \theta _x } \\ 0&{} 1&{} 0 \\ {-\sin \theta _x }&{} 0&{} {\cos \theta _x } \\ \end{array} }} \right] \end{aligned}$$

where \(\psi =\Omega t+\left( {i-1} \right) {2\pi }/{N_{\mathrm{b}} }\), and \(\left( {i-1} \right) {2\pi }/{N_{\mathrm{b}}}\) indicates the position of the \(i^{\mathrm{th}}\) blade in the blade; \(N_{\mathrm{b}}\) is the number of blades, \(\theta _{\mathrm{T}}\) is the twist angle at disk hub, \(\theta _x\) and \(\theta _y\) are swinging angles of disk.

Appendix 3: Vectors and matrices related to the rotor–blade coupling system

  1. (1)

    \(q_{\mathrm{rb}}\) is generalized coordinate vector of rotor–blade coupling system.

    $$\begin{aligned} q_{\mathrm{rb}} =\left[ {q_{\mathrm{r}} }\quad {q_\theta }\quad {q_{\mathrm{b}} } \right] ^{\mathrm{T}} \end{aligned}$$
    (50)

    where \(q_{\mathrm{r}}\) and \(q_\theta \) are vectors of translational and torsional degrees of freedom of rotor; \(q_{\mathrm{b}} \) is the vector of degrees of freedom of blade.

  2. (2)

    \(M_{\mathrm{rb}}\) is mass matrix of rotor–blade coupling system.

    $$\begin{aligned} M_{\mathrm{rb}} =\left[ {{\begin{array}{ccc} {M_{\mathrm{r}} }&{} 0&{} {M_{\mathrm{sb}} } \\ 0&{} {M_\theta }&{} {M_{\theta \mathrm{b}} } \\ {M_{\mathrm{sb}}^\mathrm{T} }&{} M_{{\uptheta }\mathrm{b}}^{\mathrm{T}} &{} {M_{\mathrm{b}} } \\ \end{array} }} \right] \end{aligned}$$
    (51)

    where \(M_{\mathrm{r}}\) and \(M_\theta \) are vectors of translational and torsional mass matrix of rotor; \(M_{\mathrm{b}}\) is the vector of mass matrix of blade; \(M_{\theta \mathrm{b}}\) and \(M_{\mathrm{sb}}\) are coupling mass matrix of system.

  3. (3)

    \(C_{\mathrm{rb}}\) is damping matrix of rotor–blade system(including proportional damping and gyro matrix)

    $$\begin{aligned} C_{\mathrm{rb}} =\left[ {{\begin{array}{ccc} {C_{\mathrm{r}} }&{} {C_{\mathrm{s}\theta } }&{} {C_{\mathrm{sb}} } \\ {C_{\mathrm{s}\theta }^{\mathrm{T}} }&{} {C_\theta }&{} {C_{\theta \mathrm{b}} } \\ {C_{\mathrm{sb}}^{\mathrm{T}} }&{} {C_{\theta \mathrm{b}}^{\mathrm{T}} }&{} {C_{\mathrm{b}} } \\ \end{array} }} \right] \end{aligned}$$
    (52)

    where \(C_{\mathrm{r}}\) and \(C_\theta \) are vectors of translational and torsional damping matrix of rotor; \(C_{\mathrm{b}}\) is the vector of damping matrix of blade; \(C_{\mathrm{s}\theta }\), \(C_{\mathrm{sb}}\) and \(C_{\theta \mathrm{b}}\) are coupling damping matrix of system.

  4. (4)

    \(K_{\mathrm{rb}}\) is stiffness matrix of rotor–blade coupling system

    $$\begin{aligned} K_{\mathrm{rb}} =\left[ {{\begin{array}{ccc} {K_{\mathrm{r}} }&{} 0&{} 0 \\ 0&{} {K_\theta }&{} 0 \\ 0&{} 0&{} {K_{\mathrm{b}} } \\ \end{array} }} \right] \end{aligned}$$
    (53)

where \(K_{\mathrm{r}}\) and \(K_\theta \) are vectors of translational and torsional stiffness matrices of rotor; \(K_{\mathrm{b}}\) is the vector of stiffness matrix of blade.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., She, H., Tang, Q. et al. The effect of blade vibration on the nonlinear characteristics of rotor–bearing system supported by nonlinear suspension. Nonlinear Dyn 89, 987–1010 (2017). https://doi.org/10.1007/s11071-017-3496-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3496-z

Keywords

Navigation