Skip to main content
Log in

The coupling analysis of tank motion and sloshing by a fully nonlinear decoupling method

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, the three degrees-of-freedom motion of a two-dimensional rectangular liquid tank under wave action is simulated by the boundary element method in time domain. The coupling effects between tank motion and internal sloshing flow are investigated in partially filled conditions. The fourth-order Runge–Kutta method is adopted to update the wave shape and velocity potential on the free surface. The fully nonlinear mutual dependence of the incident wave, tank motion and internal sloshing flow is decoupled through an auxiliary function method, by which the liquid tank acceleration can be obtained directly without knowing the pressure distribution. The corresponding validation of numerical model is carried out and indicates that the accuracy of the present method is satisfactory to evaluate the dynamic responses of tank and sloshing motion. The corresponding response amplitude operators of tank motions for various wave frequencies, amplitudes and filling conditions are obtained, and the nonlinear coupling effects of sloshing flow on the tank responses are analyzed. It is found that the coupling effects have significant influence on sway and roll motion while have little impact on heave motion. The most important coupling effects on roll motion are the split of peak. In addition, due to the nonlinearity of sloshing flow, the roll motion amplitude is not linearly proportional to wave amplitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Abramson, H.N.: The dynamic behavior of liquids in moving container. NASA SP-106, Washington, D.C. 16(7), 115–119 (1966)

  2. Faltinsen, O.M., Rognebakke, O.F., Lukovsky, I.A., et al.: Multidimensional modal analysis of nonlinear sloshing in a rectangular tank with finite water depth. J. Fluid Mech. 407, 201–234 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Faltinsen, O.M., Timokha, A.N.: An adaptive multimodal approach to nonlinear sloshing in a rectangular tank. J. Fluid Mech. 432, 167–200 (2001)

    MATH  Google Scholar 

  4. Nakayama, T., Washizu, K.: The boundary element method applied to the analysis of two-dimensional nonlinear sloshing problems. Int. J. Numer. Methods Eng. 17, 1631–1646 (1981)

    Article  MATH  Google Scholar 

  5. Cho, J.R., Lee, H.W.: Non-linear finite element analysis of large amplitude sloshing flow in two-dimensional tank. Int. J. Numer. Methods Eng. 61, 514–531 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ferrant, P., Touze, D.: Simulation of sloshing waves in a 3D tank based on a pseudo spectral method. In: Proceedings of the 16th IWWWFB Conference, Hiroshima, Japan (2001)

  7. Wang, C.Z., Khoo, B.C.: Finite element analysis of two-dimensional nonlinear sloshing problems in random excitation. Ocean Eng. 32, 107–133 (2005)

    Article  Google Scholar 

  8. Liu, D., Lin, P.: A numerical study of three-dimensional liquid sloshing in tanks. J. Comput. Phys. 227, 3921–3939 (2008)

    Article  MATH  Google Scholar 

  9. Wu, C.H., Chen, B.F.: Sloshing waves and resonance modes of fluid in a 3D tank by a time-independent finite difference method. Ocean Eng. 36(6), 500–510 (2009)

    Article  Google Scholar 

  10. Chen, B.F., Chiang, H.W.: Complete 2D and fully nonlinear analysis of ideal fluid in tanks. J. Eng. Mech. ASCE 125, 70–78 (1999)

    Article  Google Scholar 

  11. Chen, B.F.: Viscous fluid in a tank under coupled surge, and pitch motions. J. Waterw. Port C ASCE 131, 239–256 (2005)

    Article  Google Scholar 

  12. Chen, B.F., Nokes, R.: Time-independent finite difference analysis of 2D and nonlinear viscous liquid sloshing in a rectangular tank. J. Comput. Phys. 209, 47–81 (2005)

    Article  MATH  Google Scholar 

  13. Kim, Y.: Numerical simulation of sloshing flows with impact load. Appl. Ocean Res. 23, 53–62 (2001)

    Article  Google Scholar 

  14. Kim, Y., Shin, Y.S., Lee, K.H.: Numerical study on slosh-induced impact pressures on 3-D prismatic tanks. Appl. Ocean Res. 26, 213–226 (2004)

    Article  Google Scholar 

  15. Gedikli, A., Erguven, M.E.: Evaluation of sloshing problem by variational boundary element method. Eng. Anal. Bound. Elem. 27(9), 935–943 (2003)

    Article  MATH  Google Scholar 

  16. Biswal, K.C., Bhattacharyya, S.K., Sinha, P.K.: Nonlinear sloshing in partially liquid filled containers with baffles. Int. J. Numer. Methods Eng. 68, 317–337 (2006)

    Article  MATH  Google Scholar 

  17. Isaacson, M., Premasiri, S.: Hydrodynamic damping due to baffles in a rectangular tank. Can. J. Civ. Eng. 28, 608–616 (2001)

    Article  Google Scholar 

  18. Okamoto, T., Kawahara, M.: Two-dimensional sloshing analysis by Lagangian finite element method. Int. J. Numer. Methods Fluids 11, 453–477 (1990)

    Article  MATH  Google Scholar 

  19. Okamoto, T., Kawahara, M.: 3-D sloshing analysis by an arbitrary Lagangian–Eulerian finite element method. Int. J. Comput. Fluid Dyn. 8, 129–146 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kim, Y., Sin, Y.S., Lee, K.H.: Numerical study on slosh-induced impact pressures on three-dimensional prismatic tank. Appl. Ocean Res. 26, 213–226 (2004)

    Article  Google Scholar 

  21. Virellaa, J.C., Pratob, C.A., Godoyb Luis, A.: Linear and nonlinear 2D finite element analysis of sloshing modes and pressures in rectangular tanks subject to horizontal harmonic motions. J. Sound Vib. 312, 442–460 (2008)

    Article  Google Scholar 

  22. Akyildiz, H., Ünal, E.: Experimental investigation of pressure distribution on a rectangular tank due to the liquid sloshing. Ocean Eng. 32, 1503–1516 (2005)

    Article  Google Scholar 

  23. Rognebakke, O.F., Faltinsen, O.M.: Coupling of sloshing and ship motions. J. Ship Res. 47, 208–221 (2003)

    Google Scholar 

  24. Newman, J.N.: Wave effects on vessels with internal tanks. In: Proceedings of the 20th IWWWFB Conference, Spitsbergen, Norway (2005)

  25. Nam, B.W., Kim, Y., Kim, D.W., Kim, Y.S.: Experimental and numerical studies on ship motion responses coupled with sloshing in waves. J. Ship Res. 53(2), 68–82 (2009)

    Google Scholar 

  26. Molin, B., Remy, F., Rigaud, S., De Jouette, ch.: LNG-FPSO’s: frequency domain coupled analysis of support and liquid cargo motions. In: Proceeding of INAM Conference, Rethymnon, Greece (2002)

  27. Malenica, S., Zalar, M., Chen, X.B.: Dynamic coupling of seakeeping and sloshing. In: Proceeding of the 13th ISOPE Conference, Hawaii, USA (2003)

  28. Chakrabarti, S.K.: Numerical models in fluid-structure interaction, pp. 211–251. WIT Press, Boston (2005)

    Book  Google Scholar 

  29. Kim, Y.: A numerical study on sloshing flows coupled with ship motion-the anti-rolling tank problem. J. Ship Res. 46(1), 52–62 (2002)

    Google Scholar 

  30. Kim, Y., Shin, Y.S., Lee, K.H.: Numerical study on slosh-induced impact pressures on three-dimensional prismatic tanks. Appl. Ocean Res. 26(5), 213–226 (2004)

    Article  Google Scholar 

  31. Lee, S.J., Kim, M.H., Lee, D.H., Kim, J.W., Kim, Y.H.: The effects of LNG-tank sloshing on the global motions of LNG carriers. Ocean Eng. 34, 10–20 (2007)

    Article  Google Scholar 

  32. Kim, Y., Nam, B.W., Kim, D.W., Kim, Y.S.: Study on coupling effects of ship motion and sloshing. Ocean Eng. 34(36), 2176–2187 (2007)

    Article  Google Scholar 

  33. Chen, B.F., Chiang, H.W.: Complete two-dimensional analysis of sea-wave-induced fully nonlinear sloshing fluid in a rigid floating tank. Ocean Eng. 27(9), 953–977 (2000)

    Article  Google Scholar 

  34. Huang, S., Duan, W.Y., Zhang, H.: A coupled analysis of nonlinear sloshing and ship motion. J. Mar. Sci. Appl. 11, 427–436 (2002)

    Article  Google Scholar 

  35. Vinje, T., Brevig, P.: Numerical simulation of breaking wave. Adv. Water Resour. 4(2), 77–82 (1981)

    Article  Google Scholar 

  36. Cao, Y., Beck, R.F., Schultz, W.W.: Nonlinear computation of wave loads and motions of floating bodies in incident waves. In: Proceeding of the 9th IWWWFB Conference, Kuju, Oita, Japan (1994)

  37. Wu, G.X., Eatock Taylor, R.: The coupled finite element and boundary element analysis of nonlinear interactions between waves and bodies. Ocean Eng. 30, 387–400 (2003)

    Article  Google Scholar 

  38. Longuet-Higgins, M., Cokelet, E.D.: The deformation of steep surface waves on water: I. a numerical method of computation. In: Proceedings of the Royal Society of London A, vol. 350, pp. 1–26 (1976)

  39. Tanizawa, K., Naito, S.: A study on parametric roll motions by fully nonlinear numerical wave tank. In: Proceedings of the 7th ISOPE Conference, Honolulu, Hawaii, USA (1997)

  40. Contento, G., Codiglia, R., D’Este, F.: Nonlinear effects in 2D transient nonbreaking waves in a closed flume. Appl. Ocean Res. 23(1), 3–13 (2001)

    Article  Google Scholar 

  41. Wu, G.X., Ma, Q.W., Eatock Taylor, R.: Numerical simulation of sloshing waves in a 3D tank based on a finite element method. Appl. Ocean Res. 20, 337–355 (1998)

    Article  Google Scholar 

  42. Sun, S.Y., Sun, S.L., Wu, G.X.: Oblique water entry of a wedge into waves with gravity effect. J. Fluid Struct. 52, 49–64 (2015)

    Article  Google Scholar 

  43. Zhang, X., Khoo, B., Lou, J.: Wave propagation in a fully nonlinear numerical wave tank: a desingularized method. Ocean Eng. 33(17–18), 2310–2331 (2006)

    Article  Google Scholar 

  44. Nojiri, N., Murayama, K.: A study on the drifting force on two-dimensional floating body in regular waves. Trans. West Jpn. Soc. Nav. Archit. 51, 131–152 (1975)

    Google Scholar 

  45. Tanizawa, K., Minami, M.: On the accuracy of NWT for radiation and diffraction problem. In: The 6th Symposium on Nonlinear and Free-surface Flow (1998)

  46. Koo, W., Kim, M.H.: Freely floating-body simulation by a 2D fully nonlinear numerical wave tank. Ocean Eng. 31(16), 2011–2046 (2004)

    Article  Google Scholar 

  47. Jiang, S.C., Teng, B., Bai, W., Gou, Y.: Numerical simulation of coupling effect between ship motion and liquid sloshing under wave action. Ocean Eng. 108, 140–154 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos. 51679045, 51579052, 11302057 and 11102048).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi-Li Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Sun, SL. & Hu, J. The coupling analysis of tank motion and sloshing by a fully nonlinear decoupling method. Nonlinear Dyn 89, 971–985 (2017). https://doi.org/10.1007/s11071-017-3495-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3495-0

Keywords

Navigation