Skip to main content

Reductions and exact solutions of the (2 + 1)-dimensional breaking soliton equation via conservation laws

Abstract

We construct conservation laws for the (2 + 1)-dimensional breaking soliton equation. Thereafter, we employ the definition of the association of symmetries with conservation laws to obtain exact solutions for the (2 + 1)-dimensional breaking soliton equation via the generalized double reduction theorem.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. 1.

    Calogero, F., Degasperis, A.: Nonlinear evolution equations solvable by the inverse spectral transform.—I. Nuovo Cimento B 32, 201–242 (1976).

  2. 2.

    Calogero, F., Degasperis, A.: Nonlinear evolution equations solvable by the inverse spectral transform.—II. Nuovo Cimento B 39, 1–54 (1977)

  3. 3.

    Zhang, J.F.: Soliton-like solutions for the (2+l)-dimensional nonlinear evolution equation. Commun. Theor. Phys. 32, 315–318 (1999)

  4. 4.

    Tian, J.H., Chen, H.L., Liu, X.Q.: Reduction and new explicit solutions of (2+1)-dimensional breaking soliton equation. Commun. Theor. Phys. 45, 33–35 (2006)

    MathSciNet  Article  MATH  Google Scholar 

  5. 5.

    Ma, W.X., Fuchssteiner, B.: Explicit and exact solutions to a Kolmogorov–Petrovskii–Piskunov equation. Int. J. Non-Linear Mech. 31, 329–338 (1996)

    MathSciNet  Article  MATH  Google Scholar 

  6. 6.

    Ma, W.X., Zhou, R., Gao, L.: Exact one-periodic and two-periodic wave solutions to Hirota bilinear equations in (2 + 1)-dimensions. Mod. Phys. Lett A. 21, 1677–1688 (2009)

    MathSciNet  Article  MATH  Google Scholar 

  7. 7.

    Ma, W.X., Lee, J.H.: A transformed rational function method and exact solutions to the (3 + 1)-dimensional Jimbo–Miwa equation. Chaos Solitons Fractals 42, 1356–1363 (2009)

    MathSciNet  Article  MATH  Google Scholar 

  8. 8.

    Lee, J., Sakthivel, R.: Exact travelling wave solutions of the Schamel–Korteweg–de Vries equation. Rep. Math. Phys. 68, 153–161 (2011)

    MathSciNet  Article  MATH  Google Scholar 

  9. 9.

    Wang, M., Xiangzheng, L.X., Jinliang, Z.J.: The \((G^{\prime }/G)\)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics. Phys. Lett. A 372, 417–423 (2008)

    MathSciNet  Article  MATH  Google Scholar 

  10. 10.

    Noether, E.: Invariante variationsprobleme. König Gesell Wissen Göttingen, Math. Phys. Kl. Heft. 2, 235–257 (1918)

    MATH  Google Scholar 

  11. 11.

    Sjöberg, A.: Double reduction of partial differential equations from the association of symmetries with conservation laws with application. Appl. Math. Comput. 184, 608–616 (2007)

    MathSciNet  MATH  Google Scholar 

  12. 12.

    Bokhari, A.H., Al-Dweik, A.Y., Zaman, F.D., Kara, A.H., Mahomed, F.M.: Generalization of the double reduction theory. Nonlinear Anal. Real. 11, 3763–3769 (2010)

    MathSciNet  Article  MATH  Google Scholar 

  13. 13.

    Naz, R., Ali, Z., Naeem, I.: Reductions and new exact solutions of ZK, Garden KP and Modified KP equations via generalized doubled reduction theorem, Abstr. Appl. Anal. ID 340564 (2013)

  14. 14.

    Kara, A.H., Mahomed, F.M.: Noether-type symmetries and conservation laws via partial Lagrangians. Nonlinear. Dyn. 45, 367–383 (2006)

    MathSciNet  Article  MATH  Google Scholar 

  15. 15.

    Ibragimov, N.H., Kara, A.H., Mahomed, F.M.: Lie–Backlund and Noether symmetries with applications. Nonlinear Dyn. 15(2), 115–136 (1998)

    Article  MATH  Google Scholar 

  16. 16.

    Yaşar, E.: Variational principles and conservation laws to the Burridge–Knopoff equation. Nonlinear Dyn. 54, 307–312 (2008)

    MathSciNet  Article  MATH  Google Scholar 

  17. 17.

    Kara, A.H., Mahomed, F.M.: Relationship between symmetries and conservation laws. Int. J. Theor. Phys. 9, 60–72 (2002)

    MATH  Google Scholar 

  18. 18.

    Olver, P.J.: Application of Lie Groups to Differential Equations, 2nd edn. Springer, New York (1993)

  19. 19.

    Ovsiannikov, L.V.: Group Analysis of Differential Equations. Academic Press, New York (1982)

    MATH  Google Scholar 

  20. 20.

    Kudryashov, N.A.: Exact soliton solutions of the generalized evolution equation of wave dynamics. J. Appl. Math. Mech. 52, 361–365 (1988)

    MathSciNet  Article  Google Scholar 

  21. 21.

    Kudryashov, N.A.: On types of nonlinear nonintegrable differential equations with exact solutions. Phys. Lett. A. 155, 269–275 (1991)

    MathSciNet  Article  Google Scholar 

  22. 22.

    Kudryashov, N.A.: One method for finding exact solutions of nonlinear differential equations. Commun. Nonlinear Sci. Numer. Simul. 17, 2248–2253 (2012)

    MathSciNet  Article  MATH  Google Scholar 

Download references

Acknowledgements

B. Muatjetjeja would like to thank the Faculty Research Committee (FRC), North-West University, Mafikeng Campus, South Africa, for its financial support. O.P. Porogo would like to thank the DST-NRF Centre of Excellence in Mathematical and Statistical Sciences for its financial support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ben Muatjetjeja.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Muatjetjeja, B., Porogo, O.P. Reductions and exact solutions of the (2 + 1)-dimensional breaking soliton equation via conservation laws. Nonlinear Dyn 89, 443–451 (2017). https://doi.org/10.1007/s11071-017-3463-8

Download citation

Keywords

  • Lagrangian
  • Noether operators
  • Conservation laws
  • Generalized double reduction
  • Exact solutions

Mathematics Subject Classification

  • 35QXX
  • 35L65