Nonlinear Dynamics

, Volume 89, Issue 1, pp 367–381 | Cite as

Lag synchronization for fractional-order memristive neural networks via period intermittent control

Original Paper

Abstract

In this paper, an intermittent control scheme is adopted to deal with the synchronization problem of fractional-order memristive neural networks(FMNNs) with switching jumps mismatch. Considering the inherent characteristic of FMNNs, a fractional-order differential inequality is introduced. Based on differential inclusions theory and the properties of Mittag Leffler function, some intermittent synchronization criteria are derived. The synchronization regain which is related to order \(\alpha \), control period T and the control width \(\delta \) is discussed in details. In addition, the lag complete synchronization criteria of FMNNs with switching jumps match are also obtained by period intermittent control. Finally, numerical simulations are presented to verify the effectiveness of the theoretical analysis.

Keywords

Lag synchronization Fractional-order memristive neural networks Switching jumps mismatch 

References

  1. 1.
    Aubin, J.P., Cellina, A.: Differential Inclusions. Springer, Berlin (1984)CrossRefMATHGoogle Scholar
  2. 2.
    Aubin, J.P., Frankowska, H.: Set-Valued Analysis. Springer, Berlin (2009)CrossRefMATHGoogle Scholar
  3. 3.
    Bao, H.B., Park, J.H., Cao, J.D.: Adaptive synchronization of fractional-order memristor-based neural networks with time delay. Nonlinear Dyn. 82(3), 1343–1354 (2015)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Bao, H.B., Park, J.H., Cao, J.D.: Exponential synchronization of coupled Stochastic Memristor-Based Neural Networks With Time-Varying Probabilistic Delay Coupling and Impulsive Delay. IEEE Trans. Neural Netw. Learn. Syst. 27(1), 190–201 (2016)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bhrawy, A.H., Doha, E.H., Baleanu, D., Ezz-Eldien, S.S.: A spectral tau algorithm based on Jacobi operational matrix for numerical solution of time fractional diffusion-wave equations. J. Comput. Phys. 293, 142–156 (2015)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Chen, W., Ye, L., Sun, H.: Fractional diffusion equations by the Kansa method. Comput. Math. Appl. 59(5), 1614–1620 (2010)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Chua, L.O.: Memristor-the missing circuit element. IEEE Trans. Circuit Theory 18, 507–519 (1971)CrossRefGoogle Scholar
  8. 8.
    Chua, L.: Resistance switching memories are memristors. Appl. Phys. A 102(4), 765–783 (2011)CrossRefMATHGoogle Scholar
  9. 9.
    Diethelm, K.: The Analysis of Fractional Differential Equations. Springer, Berlin (2010)CrossRefMATHGoogle Scholar
  10. 10.
    Ding, S.B., Wang, Z.S.: Lag quasi-synchronization for memristive neural networks with switching jumps mismatch. Neural Comput. Appl. 1–12 (2016). doi:10.1007/s00521-016-2291-y
  11. 11.
    Duan, S., Hu, X., Dong, Z., et al.: Memristor-based cellular nonlinear/neural network: design, analysis, and applications. IEEE Trans. Neural Netw. Learn. Syst. 26(6), 1202–1213 (2015)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Duarte-Mermoud, M.A., Aguila-Camacho, N., Gallegos, J.A., Castro-Linares, R.: Using general quadratic Lyapunov functions to prove Lyapunov uniform stability for fractional order systems. Commun. Nonlinear Sci. Numer. Simul. 22(1), 650–659 (2015)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Feng, J., Yang, P., Zhao, Y.: Cluster synchronization for nonlinearly time-varying delayed coupling complex networks with stochastic perturbation via periodically intermittent pinning control. Appl. Math. Comput. 291, 52–68 (2016)MathSciNetGoogle Scholar
  14. 14.
    Filippov, A.F.: Differential equations with discontinuous righthand sides. In: Arscott, F.M. (ed.) Mathematics and its Applications (Soviet Series). Kluwer Academic Publisher, Boston (1988)Google Scholar
  15. 15.
    Forti, M., Nistri, P., Quincampoix, M.: Generalized neural network for nonsmooth nonlinear programming problems. IEEE Trans. Circuits Syst. I: Regul. Pap. 51(9), 1741–1754 (2004)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Forti, M., Nistri, P., Papini, D.: Global exponential stability and global convergence in finite time of delayed neural networks with infinite gain. IEEE Trans. Neural Netw. 16(6), 1449–1463 (2005)CrossRefGoogle Scholar
  17. 17.
    Henderson, J., Ouahab, A.: Fractional functional differential inclusions with finite delay. Nonlinear Anal. Theory Methods Appl. 70(5), 2091–2105 (2009)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Hu, J., Wang, J.: Global uniform asymptotic stability of memristor-based recurrent neural networks with time delays. IEEE International Joint Conference on Neural Networks, 1–8 (2010)Google Scholar
  19. 19.
    Isfer, L.A.D., Lenzi, E.K., Teixeira, G.M., Lenzi, M.K.: Fractional control of an industrial furnace. Acta Sci. Technol. 32(3), 279–285 (2010)Google Scholar
  20. 20.
    Kilbas, A.A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)MATHGoogle Scholar
  21. 21.
    Li, N., Cao, J.D.: Lag synchronization of memristor-based coupled neural networks via \(\omega \)-measure. IEEE Trans. Neural Netw. Learn. Syst. 27(3), 686–697 (2016)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Machado, J.T., Kiryakova, V., Mainardi, F.: Recent history of fractional calculus. Commun. Nonlinear Sci. Numer. Simul. 16, 1140–1153 (2011)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Oldham, K.B.: Fractional differential equations in electrochemistry. Adv. Eng. Softw. 41(1), 9–12 (2010)CrossRefMATHGoogle Scholar
  24. 24.
    Pershin, Y.V., Ventra, M.D.: Experimental demonstration of associative memory with memristive neural networks. Neural Netw. 23, 881–886 (2010)CrossRefGoogle Scholar
  25. 25.
    Pldlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)Google Scholar
  26. 26.
    Sharifi, M.J., Banadaki, Y.M.: General SPICE models for memristor and application to circuit simulation of memristor-based synapses and memory cells. J. Circuits Syst. Comput. 19, 407–424 (2010)CrossRefGoogle Scholar
  27. 27.
    Shi, L., Yang, X., Li, Y., et al.: Finite-time synchronization of nonidentical chaotic systems with multiple time-varying delays and bounded perturbations. Nonlinear Dyn. 83(1–2), 75–87 (2016)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found. Nature 453, 80–83 (2008)CrossRefGoogle Scholar
  29. 29.
    Szabo, T.L., Wu, J.: A model for longitudinal and shear wave propagation in viscoelastic media. J. Acoust. Soc. Am. 107(5), 2437–2446 (2000)CrossRefGoogle Scholar
  30. 30.
    Toledo, H.R., Rico, R.V., Iglesias, S.G.A., Diwekar, U.M.: A fractional calculus approach to the dynamic optimization of biological reactive systems. Part I: fractional models for biological reactions. Chem. Eng. Sci. 117, 217–228 (2014)CrossRefGoogle Scholar
  31. 31.
    Tour, J.M., He, T.: Electronics: the fourth element. Nature 453, 42–43 (2008)CrossRefGoogle Scholar
  32. 32.
    Velmurugan, G., Rakkiyappan, R.: Hybrid projective synchronization of fractional-order memristor-based neural networks with time delays. Nonlinear Dyn. 83(1–2), 419–432 (2016)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Wang, L.M., Shen, Y., Yin, Q., Zhang, G.D.: Adaptive synchronization of memristor-based neural networks with time-varying delays. IEEE Trans. Neural Netw. Learn. Syst. 26(9), 2033–2042 (2015)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Wang, L., Shen, Y., Yin, Q., Zhang, G.: Adaptive synchronization of memristor-based neural networks with time-varying delays. IEEE Trans. Neural Netw. Learn. Syst. 26, 2033–2042 (2015)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Wen, S., Zeng, Z., Huang, T., Zhang, Y.: Exponential adaptive lag synchronization of memristive neural networks via fuzzy method and applications in pseudorandom number generators. IEEE Trans. Fuzzy Syst. 22(6), 1704–1713 (2014)CrossRefGoogle Scholar
  36. 36.
    Wen, S., Zeng, Z., Huang, T., et al.: Lag synchronization of switched neural networks via neural activation function and applications in image encryption. IEEE Trans. Neural Netw. Learn. Syst. 26(7), 1493–1502 (2015)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Wen, S., Zeng, Z., Chen, M.Z., et al.: Synchronization of switched neural networks with communication delays via the event-triggered control. IEEE Trans. Neural Netw. Learn. Syst. 99, 1–10 (2016)CrossRefGoogle Scholar
  38. 38.
    Wen, G., Hu, G., Hu, J., et al.: Frequency regulation of source-grid-load systems: a compound control strategy. IEEE Trans. Ind. Inform. 12(1), 69–78 (2016)MathSciNetGoogle Scholar
  39. 39.
    Wen, S., Huang, T., Yu, X., Chen, M.Z., Zeng, Z.: Sliding-mode control of memristive Chua’s systems via the event-based method. IEEE Trans. Circuits Syst. II: Express Briefs 64(1), 81–85 (2017)CrossRefGoogle Scholar
  40. 40.
    Wong, R., Zhao, Y.Q.: Exponential asymptotics of the Mittag-Leffler function. Constr. Approxi. 18(3), 355–385 (2002)MathSciNetCrossRefMATHGoogle Scholar
  41. 41.
    Wu, A., Zeng, Z.: Anti-synchronization control of a class of memristive recurrent neural networks. Commun. Nonlinear Sci. Numer. Simul. 18(2), 373–385 (2013)MathSciNetCrossRefMATHGoogle Scholar
  42. 42.
    Yu, J., Hu, C., Jiang, H., Fan, X.: Projective synchronization for fractional neural networks. Neural Netw. 49, 87–95 (2014)CrossRefMATHGoogle Scholar
  43. 43.
    Zhang, S., Yu, Y., Wang, Q.: Stability analysis of fractional-order Hopfield neural networks with discontinuous activation functions. Neurocomputing 171, 1075–1084 (2016)CrossRefGoogle Scholar
  44. 44.
    Zhang, G., Shen, Y.: Exponential stabilization of memristor-based chaotic neural networks with time-varying delays via intermittent control. IEEE Trans. Neural Netw. Learn. Syst. 26(7), 1431–1441 (2015)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.School of Science, Institute of AutomationJiangnan UniversityWuxiPeople’s Republic of China

Personalised recommendations