Skip to main content

The tuned bistable nonlinear energy sink


A bistable nonlinear energy sink conceived to mitigate the vibrations of host structural systems is considered in this paper. The hosting structure consists of two coupled symmetric linear oscillators (LOs), and the nonlinear energy sink (NES) is connected to one of them. The peculiar nonlinear dynamics of the resulting three-degree-of-freedom system is analytically described by means of its slow invariant manifold derived from a suitable rescaling, coupled with a harmonic balance procedure, applied to the governing equations transformed in modal coordinates. On the basis of the first-order reduced model, the absorber is tuned and optimized to mitigate both modes for a broad range of impulsive load magnitudes applied to the LOs. On the one hand, for low-amplitude, in-well, oscillations, the parameters governing the bistable NES are tuned in order to make it functioning as a linear tuned mass damper (TMD); on the other, for high-amplitude, cross-well, oscillations, the absorber is optimized on the basis of the invariant manifolds features. The analytically predicted performance of the resulting tuned bistable nonlinear energy sink (TBNES) is numerically validated in terms of dissipation time; the absorption capabilities are eventually compared with either a TMD and a purely cubic NES. It is shown that, for a wide range of impulse amplitudes, the TBNES allows the most efficient absorption even for the detuned mode, where a single TMD cannot be effective.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12


  1. 1.

    Frahm, H.: Device for damping vibrations of bodies. US Patent 989958 (April 1911)

  2. 2.

    Den Hartog, J.P.: Mechanical vibrations. McGraw-Hill, New York (1956)

    MATH  Google Scholar 

  3. 3.

    Warburton, G.: Optimum absorber parameters for various combinations of response and excitation parameters. Earthq. Eng. Struct. Dyn. 10(3), 381–401 (1982)

    Article  Google Scholar 

  4. 4.

    Fujino, Y., Abe, M.: Design formulas for tuned mass dampers based on a perturbation technique. Earthq. Eng. Struct. Dyn. 22(10), 833–854 (1993)

    Article  Google Scholar 

  5. 5.

    Rana, R., Soong, T.: Parametric study and simplified design of tuned mass dampers. Eng. Struct. 20(3), 193–204 (1998)

    Article  Google Scholar 

  6. 6.

    Salvi, J., Rizzi, E., Rustighi, E., Ferguson, N.: On the optimization of a hybrid tuned mass damper for impulse loading. Smart Mater. Struct. 24(8), 085010 (2015)

    Article  Google Scholar 

  7. 7.

    Chen, S., Cai, C., Gu, M., Chang, C.: Optimal variables of TMDs for multi-mode buffeting control of long-span bridges. Wind Struct. 6(5), 387–402 (2003)

    Article  Google Scholar 

  8. 8.

    Gendelman, O., Manevitch, L., Vakakis, A.F., Mcloskey, R.: Energy pumping in nonlinear mechanical oscillators: part I—dynamics of the underlying Hamiltonian systems. J. Appl. Mech. 68(1), 34–41 (2001)

    MathSciNet  Article  MATH  Google Scholar 

  9. 9.

    Kerschen, G., Lee, Y.S., Vakakis, A.F., McFarland, D.M., Bergman, L.A.: Irreversible passive energy transfer in coupled oscillators with essential nonlinearity. SIAM J. Appl. Math. 66(2), 648–679 (2005)

    MathSciNet  Article  MATH  Google Scholar 

  10. 10.

    Nucera, F., Vakakis, A.F., McFarland, D., Bergman, L., Kerschen, G.: Targeted energy transfers in vibro-impact oscillators for seismic mitigation. Nonlinear Dyn. 50(3), 651–677 (2007)

    Article  MATH  Google Scholar 

  11. 11.

    AL-Shudeifat, M.A., Vakakis, A.F., Bergman, L.A.: Shock mitigation by means of low-to high-frequency nonlinear targeted energy transfers in a large-scale structure. J. Comput. Nonlinear Dyn. 11(2), 02100 (2016)

    Google Scholar 

  12. 12.

    Sigalov, G., Gendelman, O., Al-Shudeifat, M., Manevitch, L., Vakakis, A., Bergman, L.: Resonance captures and targeted energy transfers in an inertially-coupled rotational nonlinear energy sink. Nonlinear Dyn. 69(4), 1693–1704 (2012)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Guo, C., AL-Shudeifat, M.L., Vakakis, A.F., Bergman, L.A., McFarland, D.M., Yan, J.: Vibration reduction in unbalanced hollow rotor systems with nonlinear energy sinks. Nonlinear Dyn. 79(1), 527–538 (2015)

    Article  Google Scholar 

  14. 14.

    Farid, M., Gendelman, O.V.: Tuned pendulum as nonlinear energy sink for broad energy range. J. Vib. Control 23(3), 373–388 (2017)

    MathSciNet  Article  Google Scholar 

  15. 15.

    Avramov, K., Mikhlin, Y.V.: Snap-through truss as a vibration absorber. J. Vib. Control 10(2), 291–308 (2004)

    MathSciNet  Article  MATH  Google Scholar 

  16. 16.

    Manevitch, L., Sigalov, G., Romeo, F., Bergman, L., Vakakis, A.: Dynamics of a linear oscillator coupled to a bistable light attachment: analytical study. J. Appl. Mech. 81(4), 041011 (2013)

    Article  Google Scholar 

  17. 17.

    Al-Shudeifat, M.A.: Highly efficient nonlinear energy sink. Nonlinear Dyn. 76(4), 1905–1920 (2014)

    MathSciNet  Article  MATH  Google Scholar 

  18. 18.

    Romeo, F., Manevitch, L., Bergman, L., Vakakis, A.: Transient and chaotic low-energy transfers in a system with bistable nonlinearity. Chaos Interdiscip. J. Nonlinear Sci. 25(5), 053109 (2015)

    MathSciNet  Article  Google Scholar 

  19. 19.

    Luongo, A., Zulli, D.: Dynamic analysis of externally excited NES-controlled systems via a mixed multiple scale/harmonic balance algorithm. Nonlinear Dyn. 70(3), 2049–2061 (2012)

    MathSciNet  Article  Google Scholar 

  20. 20.

    Luongo, A., Zulli, D.: Aeroelastic instability analysis of NES-controlled systems via a mixed multiple scale/harmonic balance method. J. Vib. Control 20(13), 1985–1998 (2014)

    Article  MATH  Google Scholar 

  21. 21.

    Luongo, A., Zulli, D.: Nonlinear energy sink to control elastic strings: the internal resonance case. Nonlinear Dyn. 81(1–2), 425–435 (2015)

    MathSciNet  Article  MATH  Google Scholar 

  22. 22.

    Habib, G., Detroux, T., Viguié, R., Kerschen, G.: Nonlinear generalization of den Hartog’s equal-peak method. Mech. Syst. Signal Process. 52, 17–28 (2015)

    Article  Google Scholar 

  23. 23.

    Habib, G., Kerschen, G.: Suppression of limit cycle oscillations using the nonlinear tuned vibration absorber. In: Proceedings of Royal Society A, vol. 471, p. 20140976, The Royal Society (2015)

  24. 24.

    Habib, G., Kerschen, G.: A principle of similarity for nonlinear vibration absorbers. Phys. D Nonlinear Phenom. 332, 1–8 (2016)

    MathSciNet  Article  Google Scholar 

  25. 25.

    Romeo, F., Sigalov, G., Bergman, L.A., Vakakis, A.F.: Dynamics of a linear oscillator coupled to a bistable light attachment: numerical study. J. Comput. Nonlinear Dyn. 10(1), 011007 (2015)

    Article  Google Scholar 

  26. 26.

    Guckenheimer, J., Holmes, P.J.: Nonlinear oscillations, dynamical systems, and bifurcations of vector fields. Springer, Berlin (1985)

    MATH  Google Scholar 

  27. 27.

    Kovacic, I., Brennan, M.J.: The Duffing equation: nonlinear oscillators and their behaviour. Wiley, London (2011)

  28. 28.

    Nayfeh, A.H., Mook, D.T.: Nonlinear oscillations. Wiley, London (2008)

    MATH  Google Scholar 

Download references


G. Habib would like to acknowledge the financial support of the Belgian National Science Foundation FRS-FNRS (PDR T.0007.15) and of the European Union, H2020 Marie Skłodowska–Curie Individual Fellowship, Grant Agreement 704133.

Author information



Corresponding author

Correspondence to Giuseppe Habib.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Habib, G., Romeo, F. The tuned bistable nonlinear energy sink. Nonlinear Dyn 89, 179–196 (2017).

Download citation


  • Nonlinear energy sink
  • Nonlinear vibration absorber
  • Bistable vibration absorber
  • Tuned mass damper
  • Invariant manifold