Nonlinear Dynamics

, Volume 88, Issue 4, pp 3017–3021 | Cite as

Solving the \(\mathbf{(3+1) }\)-dimensional KP–Boussinesq and BKP–Boussinesq equations by the simplified Hirota’s method

Original Paper

Abstract

We study two (3\(+\)1)-dimensional generalized equations, namely the Kadomtsev–Petviashvili–Boussinesq equation and the B-type Kadomtsev–Petviashvili–Boussinesq equation. We use the simplified Hirota’s method to conduct this study and to find the general phase shift of these equations. We obtain one- and two-soliton solutions, for each equation, with the coefficients of the three spatial variables are left as free parameters. However, we also develop special conditions on the coefficients of the spatial variables guarantee the existence of three-soliton solutions for each of these two equation.

Keywords

Generalized KP equation BKP equation Boussinesq equation Simplified Hirota’s method 

References

  1. 1.
    Wazwaz, A.M.: Multiple-soliton solutions for a (3 + 1)–dimensional generalized KP equation. Commun. Nonlinear. Sci. Numer. Simul. 17, 491–495 (2012)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Wazwaz, A.M., El-Tantawy, S.: A new (3+1)-dimensional generalized Kadomtsev–Petviashvili equation. Nonlinear Dyn. 84, 1107–1112 (2016)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Ma, W.X., Xia, T.: Pfaffianized systems for a generalized Kadomtsev–Petviashvili equation. Phys. Scr. 87, 055003 (2013)CrossRefMATHGoogle Scholar
  4. 4.
    Ma, M.A., Abdeljabbar, A.: Solving the (3+1)-dimensional generalized KP and BKP equations by the multi exp-function algorithm. Appl. Math. Comput 218, 11871–11879 (2012)MathSciNetMATHGoogle Scholar
  5. 5.
    Hirota, R.: The Direct Method in Soliton Theory. Cambridge University Press, Cambridge (2004)CrossRefMATHGoogle Scholar
  6. 6.
    Biswas, A., Triki, H., Labidi, M.: Bright and dark solitons of the Rosenau-Kawahara equation with power law nonlinearity. Phys. Wave Phenom. 19(1), 24–29 (2011)CrossRefGoogle Scholar
  7. 7.
    Biswas, A.: Solitary wave solution for KdV equation with power-law nonlinearity and time-dependent coefficients. Nonlinear Dyn. 58(1–2), 345–348 (2009)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Biswas, A.: Solitary waves for power-law regularized long wave equation and R(m, n) equation. Nonlinear Dyn. 59(3), 423–426 (2010)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Biswas, A., Khalique, C.M.: Stationary solitons for nonlinear dispersive Schrodinger’s equation. Nonlinear Dyn. 63(4), 623–626 (2011)CrossRefGoogle Scholar
  10. 10.
    Kadomtsev, B.B., Petviashvili, V.I.: On the stability of solitary waves in weakly dispersive media. Sov. Phys. Dokl 15, 539–541 (1970)MATHGoogle Scholar
  11. 11.
    El-Tantawy, S.A., Moslem, W.M., Schlickeiser,R.: Ion-acoustic dark solitons collision in an ultracold neutral plasma. Physica Scripta 90(8): 085606 (2015)Google Scholar
  12. 12.
    El-Tantawy, S.A., Moslem, W.M.: Nonlinear structures of the Korteweg-de Vries and modified Korteweg-de Vries equations in non-Maxwellian electron-positron-ion plasma: Solitons collision and rogue waves. Phys. Plasma 21(5), 052112 (2014)Google Scholar
  13. 13.
    Hereman, W., Nuseir, A.: Symbolic methods to construct exact solutions of nonlinear partial differential equations. Math. Comput. Simul. 43, 13–27 (1997)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Baldwin, D., Hereman, W.: Symbolic software for the Painlevé test of nonlinear ordinary and partial differential equations. J. Nonlin. Math. Phys. 13(1), 90–110 (2006)CrossRefMATHGoogle Scholar
  15. 15.
    Wazwaz, A.M., Xu, G.Q.: Modified Kadomtsev-Petviashvili equation in (3+1) dimensions: multiple front-wave solutions. Commun. Theor. Phys. 63, 727–730 (2015)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Leblond, H., Mihalache, D.: Models of few optical cycle solitons beyond the slowly varying envelope approximation. Phys. Rep. 523, 61–126 (2013)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Leblond, H., Mihalache, D.: Few-optical-cycle solitons: modified Korteweg-de Vries sine-Gordon equation versus other non-slowly-varying-envelope-approximation models. Phys. Rev. A 79, 063835 (2009)CrossRefGoogle Scholar
  18. 18.
    Wazwaz, A.M.: Partial Differential Equations and Solitary Waves Theorem. Springer and HEP, Berlin (2009)CrossRefMATHGoogle Scholar
  19. 19.
    Wazwaz, A.M.: \(N\)-soliton solutions for the Vakhnenko equation and its generalized forms. Phys. Scr. 82, 065006 (2010)CrossRefMATHGoogle Scholar
  20. 20.
    Wazwaz, A.M.: A new generalized fifth-order nonlinear integrable equation. Phys. Scr. 83, 035003 (2011)CrossRefMATHGoogle Scholar
  21. 21.
    Wazwaz, A.M.: Distinct variants of the KdV equation with compact and noncompact structures. Appl. Math. Comput 150, 365–377 (2004)MathSciNetMATHGoogle Scholar
  22. 22.
    Wazwaz, A.M.: New solitons and kinks solutions to the Sharma-Tasso-Olver equation. Appl. Math. Comput. 188, 1205–1213 (2007)MathSciNetMATHGoogle Scholar
  23. 23.
    Wazwaz, A.M.: Gaussian solitary wave solutions for nonlinear evolution equations with logarithmic nonlinearities. Nonlinear Dyn. 83(1), 591–596 (2016)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Wazwaz, A.M., El-Tantawy, S.A.: A new integrable (3 + 1)-dimensional KdV-like model with its multiple-soliton solutions. Nonlinear Dyn. 83(3), 1529–1534 (2016)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Department of MathematicsSaint Xavier UniversityChicagoUSA
  2. 2.Department of Physics, Faculty of SciencePort Said UniversityPort SaidEgypt

Personalised recommendations