Nonlinear Dynamics

, Volume 88, Issue 4, pp 2993–3002 | Cite as

Optimal synchronization of fractional-order chaotic systems subject to unknown fractional order, input nonlinearities and uncertain dynamic using type-2 fuzzy CMAC

Original Paper


In this paper, a new robust optimal control strategy is presented to synchronize a class of fractional-order chaotic systems with unknown fractional orders, uncertain dynamics and input nonlinearities. The dynamics of the system are estimated by an integer-order model, using proposed non-singleton type-2 fuzzy cerebellar model articulation controller (NST2-CMAC). The free parameters of NST2-CMAC are adjusted based on the adaptation laws which are derived from Lyapunov stability analysis. To show the effectiveness of the proposed method, two simulation examples are provided and the results are compared with other methods.


Fractional-order chaotic systems Uncertain dynamics Optimal synchronization Non-singleton fuzzification Type-2 fuzzy neural network 


  1. 1.
    Chang, C.-M., Chen, H.-K.: Chaos and hybrid projective synchronization of commensurate and incommensurate fractional-order Chen–Lee systems. Nonlinear Dyn. 62(4), 851–858 (2010)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Wang, F., Yang, Y., Hu, A., Xu, X.: Exponential synchronization of fractional-order complex networks via pinning impulsive control. Nonlinear Dyn. 82(4), 1979–1987 (2015)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Li, D., Zhang, X., Hu, Y., Yang, Y.: Adaptive impulsive synchronization of fractional order chaotic system with uncertain and unknown parameters. Neurocomputing 167, 165–171 (2015)CrossRefGoogle Scholar
  4. 4.
    Ma, S.-J., Shen, Q., Hou, J.: Modified projective synchronization of stochastic fractional order chaotic systems with uncertain parameters. Nonlinear Dyn. 73(1–2), 93–100 (2013)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Stamova, I.: Global mittag-leffler stability and synchronization of impulsive fractional-order neural networks with time-varying delays. Nonlinear Dyn. 77(4), 1251–1260 (2014)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Zhou, P., Bai, R.: The adaptive synchronization of fractional-order chaotic system with fractional-order \(1<q<2\) via linear parameter update law. Nonlinear Dyn. 80(1–2), 753–765 (2015)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Chen, L., Chai, Y., Wu, R.: Linear matrix inequality criteria for robust synchronization of uncertain fractional-order chaotic systems. Chaos Interdiscip. J. Nonlinear Sci. 21(4), 043107 (2011)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Boulkroune, A., Bouzeriba, A., Bouden, T.: Fuzzy generalized projective synchronization of incommensurate fractional-order chaotic systems. Neurocomputing 173, 606–614 (2016)CrossRefMATHGoogle Scholar
  9. 9.
    Bouzeriba, A., Boulkroune, A., Bouden, A., Vaidyanathan, S.: Fuzzy adaptive synchronization of incommensurate fractional-order chaotic systems. In: Advances and Applications in Chaotic Systems, pp. 363–378. Springer, Switzerland (2016)Google Scholar
  10. 10.
    Bouzeriba, A., Boulkroune, A., Bouden, T.: Fuzzy adaptive synchronization of uncertain fractional-order chaotic systems. Int. J. Mach. Learn. Cybern. 7, 893–908 (2016)CrossRefMATHGoogle Scholar
  11. 11.
    Balasubramaniam, P., Muthukumar, P., Ratnavelu, K.: Theoretical and practical applications of fuzzy fractional integral sliding mode control for fractional-order dynamical system. Nonlinear Dyn. 80(1–2), 249–267 (2015)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Chen, D., Zhang, R., Sprott, J.C., Ma, X.: Synchronization between integer-order chaotic systems and a class of fractional-order chaotic system based on fuzzy sliding mode control. Nonlinear Dyn. 70(2), 1549–1561 (2012)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Shao, S., Chen, M., Yan, X.: Adaptive sliding mode synchronization for a class of fractional-order chaotic systems with disturbance. Nonlinear Dyn. 83(4), 1855–1866 (2016)Google Scholar
  14. 14.
    Wang, B., Cao, H., Wang, Y., Zhu, D.: Linear matrix inequality based fuzzy synchronization for fractional order chaos. Math. Probl. Eng. 2015 (2015) Article ID 128580. doi: 10.1155/2015/128580
  15. 15.
    Huang, X., Wang, Z., Li, Y., Lu, J.: Design of fuzzy state feedback controller for robust stabilization of uncertain fractional-order chaotic systems. J. Frankl. Inst. 351(12), 5480–5493 (2014)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Lin, T.-C., Kuo, C.-H.: \({H}_\infty \) synchronization of uncertain fractional order chaotic systems: adaptive fuzzy approach. ISA Trans. 50(4), 548–556 (2011)CrossRefGoogle Scholar
  17. 17.
    Albus, J.S.: Data storage in the cerebellar model articulation controller (cmac). J. Dyn. Syst. Meas. Control 97(3), 228–233 (1975)CrossRefMATHGoogle Scholar
  18. 18.
    Nguyen, M.N., Shi, D., Quek, C.: FCMAC-BYY: fuzzy cmac using bayesian Ying–Yang learning. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 36(5), 1180–1190 (2006)CrossRefGoogle Scholar
  19. 19.
    Lee, C.-H., Chang, F.-Y., Lin, C.-M.: An efficient interval type-2 fuzzy cmac for chaos time-series prediction and synchronization. IEEE Trans. Cybern. 44(3), 329–341 (2014)CrossRefGoogle Scholar
  20. 20.
    Roohi, M., Aghababa, M.P., Haghighi, A.R.: Switching adaptive controllers to control fractional-order complex systems with unknown structure and input nonlinearities. Complexity 21(2), 211–223 (2015)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Liao, T.-L., Yan, J.-J., Chang, J.-F.: Robust synchronization of fractional-order hyperchaotic systems subjected to input nonlinearity and unmatched external perturbations. . Abstr. Appl. Anal. 2014(2014), Article ID 517916 (2014). doi: 10.1155/2014/517916
  22. 22.
    Tian, X., Fei, S., Chai, L.: Finite-time adaptive synchronization of two different fractional-order gyroscope systems with dead-zone nonlinear inputs. J. Inf. Comput. Sci. 11, 6601–6611 (2014)CrossRefGoogle Scholar
  23. 23.
    Noghredani, N., Balochian, S.: Synchronization of fractional-order uncertain chaotic systems with input nonlinearity. Int. J. Gen. Syst. 44(4), 485–498 (2015)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Li, C., Deng, W.: Remarks on fractional derivatives. Appl. Math. Comput. 187(2), 777–784 (2007)Google Scholar
  25. 25.
    Valrio, D.: Toolbox ninteger for Matlab, v. 2.3. [Online]. Available: (2005)
  26. 26.
    Zhou, P., Huang, K.: A new 4-d non-equilibrium fractional-order chaotic system and its circuit implementation. Commun. Nonlinear Sci. Numer. Simul. 19(6), 2005–2011 (2014)CrossRefGoogle Scholar
  27. 27.
    Mohadeszadeh, M., Delavari, H.: Synchronization of fractional-order hyper-chaotic systems based on a new adaptive sliding mode control. Int. J. Dyn. Control 1–11. doi: 10.1007/s40435-015-0177-y (2015)

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Control Engineering Department, Faculty of Electrical and Computer EngineeringUniversity of TabrizTabrizIran

Personalised recommendations