Nonlinear Dynamics

, Volume 88, Issue 4, pp 2983–2992 | Cite as

Stationary and non-stationary chimeras in an ensemble of chaotic self-sustained oscillators with inertial nonlinearity

  • Andrei V. Slepnev
  • Andrei V. Bukh
  • Tatiana E. Vadivasova
Original Paper


We study spatial structures arising in an ensemble of Anishchenko–Astakhov chaotic self-sustained oscillators with non-local coupling. Diagrams of the regimes realizing in this system are constructed numerically. The peculiarities of formation of chimera states appearing with decreasing the coupling strength are analyzed. A new type of the chimera state which is born from the traveling wave regime is demonstrated.


Non-local coupling Chimera states Chaotic oscillations 

Mathematics Subject Classification

70K55 37D45 



The authors thank I. Omelchenko and A. Zakharova for useful discussions. A.V.S. acknowledges support of the Russian Science Foundation (Project No. 16-12-10175).


  1. 1.
    Abrams, D.M., Mirollo, R., Strogatz, S.H., Wiley, D.A.: Solvable model for chimera states of coupled oscillators. Phys. Rev. Lett. 101(8), 084103 (2008)CrossRefGoogle Scholar
  2. 2.
    Abrams, D.M., Strogatz, S.H.: Chimera states for coupled oscillators. Phys. Rev. Lett. 93(17), 174102 (2004)CrossRefGoogle Scholar
  3. 3.
    Abrams, D.M., Strogatz, S.H.: Chimera states in a ring of nonlocally coupled oscillators. Int. J. Bifurc. Chaos 16(01), 21–37 (2006)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Anishchenko, V.S.: Dynamical Chaos: Models and Experiments. World Scientific, Singapore (1995)MATHGoogle Scholar
  5. 5.
    Anishchenko, V.S., Astakhov, V., Neiman, A., Vadivasova, T., Schimansky-Geier, L.: Nonlinear Dynamics of Chaotic and Stochastic Systems: Tutorial and Modern Developments. Springer, Berlin (2007)MATHGoogle Scholar
  6. 6.
    Bera, B.K., Ghosh, D., Banerjee, T.: Imperfect traveling chimera states induced by local synaptic gradient coupling. Phys. Rev. E 94(1), 012215 (2016)CrossRefGoogle Scholar
  7. 7.
    Bogomolov, S.A., Slepnev, A.V., Strelkova, G.I., Schöll, E., Anishchenko, V.S.: Mechanisms of appearance of amplitude and phase chimera states in ensembles of nonlocally coupled chaotic systems. Commun. Nonlinear Sci. Numer. Simul. 43, 25–36 (2017)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Clerc, M.G., Coulibaly, S., Ferré, M.A., García-Ñustes, M.A., Rojas, R.G.: Chimera-type states induced by local coupling. Phys. Rev. E 93(5), 052204 (2016)CrossRefGoogle Scholar
  9. 9.
    Dudkowski, D., Maistrenko, Y., Kapitaniak, T.: Different types of chimera states: an interplay between spatial and dynamical chaos. Phys. Rev. E 90(3), 032920 (2014)CrossRefGoogle Scholar
  10. 10.
    Dudkowski, D., Jafari, S., Kapitaniak, T., Kuznetsov, N.V., Leonov, G.A., Prasad, A.: Hidden attractors in dynamical systems. Phys. Rep. 637, 1–50 (2016)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    González-Avella, J., Cosenza, M., San Miguel, M.: Localized coherence in two interacting populations of social agents. Phys. A 399, 24–30 (2014)CrossRefGoogle Scholar
  12. 12.
    Hagerstrom, A.M., Murphy, T.E., Roy, R., Hövel, P., Omelchenko, I., Schöll, E.: Experimental observation of chimeras in coupled-map lattices. Nat. Phys. 8(9), 658–661 (2012)CrossRefGoogle Scholar
  13. 13.
    Hizanidis, J., Kanas, V.G., Bezerianos, A., Bountis, T.: Chimera states in networks of nonlocally coupled Hindmarsh–Rose neuron models. Int. J. Bifurc. Chaos 24(03), 1450030 (2014)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Jaros, P., Maistrenko, Y., Kapitaniak, T.: Chimera states on the route from coherence to rotating waves. Phys. Rev. E 91(2), 022907 (2015)CrossRefGoogle Scholar
  15. 15.
    Kapitaniak, T., Kuzma, P., Wojewoda, J., Czolczynski, K., Maistrenko, Y.: Imperfect chimera states for coupled pendula. Sci. Rep. 4, 6379 (2014)CrossRefGoogle Scholar
  16. 16.
    Kuramoto, Y., Battogtokh, D.: Coexistence of coherence and incoherence in nonlocally coupled phase oscillators. Nonlinear Phenom. Complex Syst. 5(4), 380–385 (2002)Google Scholar
  17. 17.
    Laing, C.R.: Chimera states in heterogeneous networks. Chaos Interdiscip. J. Nonlinear Sci. 19(1), 013113 (2009)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Maistrenko, Y., Sudakov, O., Osir, O., Maistrenko, V.: Chimera states in three dimensions. New J. Phys. 17(7), 073037 (2015)CrossRefGoogle Scholar
  19. 19.
    Omelchenko, I., Maistrenko, Y., Hövel, P., Schöll, E.: Loss of coherence in dynamical networks: spatial chaos and chimera states. Phys. Rev. Lett. 106(23), 234102 (2011)CrossRefGoogle Scholar
  20. 20.
    Omelchenko, I., Omel’chenko, O.E., Hövel, P., Schöll, E.: When nonlocal coupling between oscillators becomes stronger: patched synchrony or multichimera states. Phys. Rev. Lett. 110(22), 224101 (2013)CrossRefGoogle Scholar
  21. 21.
    Omelchenko, I., Provata, A., Hizanidis, J., Schöll, E., Hövel, P.: Robustness of chimera states for coupled Fitzhugh–Nagumo oscillators. Phys. Rev. E 91(2), 022917 (2015)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Omelchenko, I., Riemenschneider, B., Hövel, P., Maistrenko, Y., Schöll, E.: Transition from spatial coherence to incoherence in coupled chaotic systems. Phys. Rev. E 85(2), 026212 (2012)CrossRefGoogle Scholar
  23. 23.
    Omel’chenko, O.E., Wolfrum, M., Yanchuk, S., Maistrenko, Y.L., Sudakov, O.: Stationary patterns of coherence and incoherence in two-dimensional arrays of non-locally-coupled phase oscillators. Phys. Rev. E 85(3), 036210 (2012)CrossRefGoogle Scholar
  24. 24.
    Omelchenko, I., Zakharova, A., Hövel, P., Siebert, J., Schöll, E.: Nonlinearity of local dynamics promotes multi-chimeras. Chaos Interdiscip. J. Nonlinear Sci. 25(8), 083104 (2015)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Panaggio, M.J., Abrams, D.M.: Chimera states: coexistence of coherence and incoherence in networks of coupled oscillators. Nonlinearity 28(3), R67–R87 (2015)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Pikovsky, A., Rosenblum, M., Kurths, J.: Synchronization: A Universal Concept in Nonlinear Sciences. Cambridge University Press, Cambridge (2001)CrossRefMATHGoogle Scholar
  27. 27.
    Provata, A., Katsaloulis, P., Verganelakis, D.A.: Dynamics of chaotic maps for modelling the multifractal spectrum of human brain Diffusion Tensor Images. Chaos Solitons Fractals 45(2), 174–180 (2012)CrossRefGoogle Scholar
  28. 28.
    Rattenborg, N., Amlaner, C., Lima, S.: Behavioral, neurophysiological and evolutionary perspectives on unihemispheric sleep. Neurosci. Biobehav. Rev. 24(8), 817–842 (2000)Google Scholar
  29. 29.
    Rosin, D.P., Rontani, D., Haynes, N.D., Schöll, E., Gauthier, D.J.: Transient scaling and resurgence of chimera states in networks of boolean phase oscillators. Phys. Rev. E 90(3), 030902(R) (2014)CrossRefGoogle Scholar
  30. 30.
    Rössler, O.: An equation for continuous chaos. Phys. Lett. A 57(5), 397–398 (1976)CrossRefGoogle Scholar
  31. 31.
    Schmidt, L., Schönleber, K., Krischer, K., García-Morales, V.: Coexistence of synchrony and incoherence in oscillatory media under nonlinear global coupling. Chaos Interdiscip. J. Nonlinear Sci. 24(1), 013102 (2014)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Semenova, N., Zakharova, A., Schöll, E., Anishchenko, V.: Does hyperbolicity impede emergence of chimera states in networks of nonlocally coupled chaotic oscillators? EPL (Europhys. Lett.) 112(4), 40002 (2015)CrossRefGoogle Scholar
  33. 33.
    Sethia, G.C., Sen, A.: Chimera states: the existence criteria revisited. Phys. Rev. Lett. 112(14), 144101 (2014)CrossRefGoogle Scholar
  34. 34.
    Tinsley, M.R., Nkomo, S., Showalter, K.: Chimera and phase-cluster states in populations of coupled chemical oscillators. Nat. Phys. 8(9), 662–665 (2012)CrossRefGoogle Scholar
  35. 35.
    Ulonska, S., Omelchenko, I., Zakharova, A., Schöll, E.: Chimera states in networks of Van der Pol oscillators with hierarchical connectivities. Chaos Interdiscip. J. Nonlinear Sci. 26(9), 094825 (2016)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Vasudevan, K., Cavers, M., Ware, A.: Earthquake sequencing: chimera states with Kuramoto model dynamics on directed graphs. Nonlinear Process. Geophys. 22(5), 499–512 (2015)CrossRefGoogle Scholar
  37. 37.
    Vüllings, A., Hizanidis, J., Omelchenko, I., Hövel, P.: Clustered chimera states in systems of type-I excitability. New J. Phys. 16(12), 123039 (2014)CrossRefGoogle Scholar
  38. 38.
    Wolfrum, M., Omel’chenko, O.E., Yanchuk, S., Maistrenko, Y.L.: Spectral properties of chimera states. Chaos Interdiscip. J. Nonlinear Sci. 21(1), 013112 (2011)MathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    Xie, J., Knobloch, E., Kao, H.C.: Multicluster and traveling chimera states in nonlocal phase-coupled oscillators. Phys. Rev. E 90(2), 022919 (2014)CrossRefGoogle Scholar
  40. 40.
    Yeldesbay, A., Pikovsky, A., Rosenblum, M.: Chimeralike states in an ensemble of globally coupled oscillators. Phys. Rev. Lett. 112(14), 144103 (2014)CrossRefGoogle Scholar
  41. 41.
    Zakharova, A., Kapeller, M., Schöll, E.: Chimera death: symmetry breaking in dynamical networks. Phys. Rev. Lett. 112(15), 154101 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Saratov National Research State UniversitySaratovRussia

Personalised recommendations