Advertisement

Nonlinear Dynamics

, Volume 88, Issue 4, pp 2933–2946 | Cite as

Helicopter flap/lag energy exchange study

  • S. Castillo-Rivera
  • M. Tomas-Rodriguez
Original Paper

Abstract

This paper presents a study on the energy exchange taking place on articulated helicopter main rotor blades. The blades are hinged, and the flap/lag modes are highly coupled. These dynamical couplings existing between the two degrees of freedom are clearly identifiable as the nonlinear terms that appear in the equations of motion are key to understand the energy exchange process. The work here conducted is carried out using VehicleSim, a multibody software specialized in modelling mechanical systems composed by rigid bodies. A spring pendulum system is also studied in order to examine its nonlinear behaviour and to establish existing analogies with the rotor blade nonlinear dynamics. The nonlinear couplings of both systems are compared to each other, and commensurability condition is analysed by means of short-time Fourier transform methods as well as the flap and lag amplitudes spectrum. Simulations are carried out, and the obtained results show clear analogies in the energy exchange process taking place in both systems. The stability of these modes is also studied using Poincare’ map method.

Keywords

Flap Lag Nonlinear Commensurability Energy 

References

  1. 1.
    Newman, S.: The Foundations of Helicopter Flight. Edward Arnold, London (1994)Google Scholar
  2. 2.
    Chen, R.T.N.: Flap-Lag Equations of Motion of Rigid, Articulated Rotor Blades with Three Hinge Sequences. NASA Technical Memorandum 100023 (1987)Google Scholar
  3. 3.
    Nayfed, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (1979)Google Scholar
  4. 4.
    Sayed, M., Kamel, M.: Stability study and control of helicopter blade flapping vibrations. Appl. Math. Model. 35, 2820–2837 (2011)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Sayed, M., Kamel, M.: 1:2 and 1:3 internal resonance active absorber for non-linear vibrating system. Appl. Math. Model. 36, 310–332 (2012)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Santos, I.F., Saracho, C.M., Smith, J.T., Eiland, J.: Contribution to experimental validation of linear and non-linear dynamic models for representing rotor-blade parametric coupled vibrations. J. Sound Vib. 271, 883–904 (2004)CrossRefGoogle Scholar
  7. 7.
    Tekin, A., Ozkaya, E., Bagdath, S.M.: Three-to-one internal resonance in multiple stepped beam systems. Appl. Math. Mech. (English Edition). 30(9), 1131–1142 (2009)Google Scholar
  8. 8.
    Yan, S., Dowell, E.H., Lin, B.: Effects of nonlinear damping suspension on nonperiodic motions of a flexible rotor in journal bearings. Nonlinear Dyn. 78, 1435–1450 (2014)CrossRefGoogle Scholar
  9. 9.
    Nayfeh, A.H., Mook, D.T., Marshall, L.R.: Nonlinear coupling of pitch and roll modes in ship motions. J. Hydronautics 7(4), 145–152 (1973)Google Scholar
  10. 10.
    Ibrahim, R.A., Grace, I.M.: Modeling of ship roll dynamics and its coupling with heave and pitch. Math. Probl. Eng. (2009). doi: 10.1155/2010/934714 MATHGoogle Scholar
  11. 11.
    Evangelou, S.A., Limebeer, D.J.N., Tomas-Rodriguez, M.: Suppression of burst oscillations in racing motorcycles. ASME J. Appl. Mech. 80(1), 011003 (2012)Google Scholar
  12. 12.
    Hamed, Y.S., EL-Sayed, A.T., El-Zahar, E.R.: On controlling the vibrations and energy transfer in MEMS gyroscope system with simultaneous resonance. Nonlinear Dyn. 83, 1687–1704 (2016)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Chun-Ni, W., Ya, W., Jun, M.: Calculation of Hamilton energy function of dynamical system by using Helmholtz theorem. Acta Phys. Sin. 65, 24 (2016)Google Scholar
  14. 14.
    Xin-Lin, S., Wu-Yin, J., Jun, M.: Energy dependence on the electric activities of a neuron. Chin. Phys. B 24, 12 (2015)Google Scholar
  15. 15.
    Li, F., Yao, C.: The infinite-scroll attractor and energy transition in chaotic circuit. Nonlinear Dyn. 84, 2305 (2016)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Sarasola, C., Torrealdea, F.J., d’Anjou, A., Moujahid, A., Graña, M.: Energy balance in feedback synchronization of chaotic systems. Phys. Rev. E 69, 011606 (2004)CrossRefMATHGoogle Scholar
  17. 17.
    Hou, Y., Fang, P., Nan, Y., Du, M.: Synchronization investigation of vibration system of two co-rotating rotor with energy balance method. Adv. Mech. Eng. 8(1), 1–19 (2016)CrossRefGoogle Scholar
  18. 18.
    Zhou, S., Cao, J., Inman, D., Lin, J., Li, D.: Harmonic balance analysis of nonlinear tristable energy harvesters for performance enhancement. J. Sound Vib. (2016). doi: 10.1016/j.jsv.2016.03.017 Google Scholar
  19. 19.
    Bauchau, O.A., Bottasso, C.L., Nikishkov, Y.G.: Modeling rotorcraft dynamics with finite element multibody procedures. Math. Comput. Model. 33(10–11), 1113–1137 (2001)Google Scholar
  20. 20.
    Stupar, S., Simonovic, A., Jovanovic, M.: Measurement and analysis of vibrations on the helicopter structure in order to detect defects of operating elements. Sci. Tech. Rev. 62(1), 58–63 (2012)Google Scholar
  21. 21.
    Leishman, J.G.: Principles of Helicopter Aerodynamics. Cambridge University Press, Cambridge (2007)Google Scholar
  22. 22.
    Ilkko, J., Hoffren, J., Siikonen, T.: Simulation of a helicopter rotor flow. J. Struct. Mech. 44(3), 186–205 (2011)Google Scholar
  23. 23.
    Magari, P.J., Shultz, L.A., Murthy, V.R.: Dynamics of helicopter rotor blades. Comput. Struct. 29(5), 763–776 (1988)Google Scholar
  24. 24.
    Johnson, W.: Helicopter Theory. Princeton Univ. Press, Princeton (1980)Google Scholar
  25. 25.
    Castillo-Rivera, S.: Advanced modelling of helicopter nonlinear dynamics and aerodynamics. Ph.D. Thesis. School of Engineering and Mathematical Sciences, City University London. United Kingdom (2015). http://openaccess.city.ac.uk/13169/
  26. 26.
    Marichal, G.N., Tomas-Rodriguez, M., Hernandez, A., Castillo-Rivera, S., Campoy, P.: Vibration reduction for vision system on board UAV using a neuro-fuzzy controller. J. Vib. Control 20(15), 2243–2253 (2013)CrossRefGoogle Scholar
  27. 27.
    Mechanical Simulation Corporation. VehicleSim solver programs reference manual. Mechanical Simulation. http://www.carsim.com (1996-2008). Accessed 28 Jan 2017
  28. 28.
    Mechanical Simulation Corporation. VehicleSim browser reference manual for bikesim, carsim, and trucksim. Mechanical Simulation. http://www.carsim.com(1996-2008). Accessed 28 Jan 2017
  29. 29.
    Morin, D.: Introduction to Classical Mechanics. Cambridge University Press, Cambridge (2007)Google Scholar
  30. 30.
    Shaeri, A., Limebeer, D.J.N., Sharp, R.S.: Nonlinear steering oscillations of motorcycles. 43rd IEEE Conference on Decision and Control. December 14–17, Atlantis, Paradise Island, Bahamas (2004)Google Scholar
  31. 31.
    Yun, C.H., Kim, D.S., Kim, S.J.: Stability augmentation of helicopter rotor blades using passive damping of shape memory alloys. KSAS Int. J. 7(1), 137–147 (2006)Google Scholar
  32. 32.
    Bramwell, A.R.S., Done, G., Balmford, D.: Bramwell’s Helicopter Dynamics. Butterworth-Heinemann, Oxford (2001)Google Scholar
  33. 33.
    Gilliam, T.D.: Numerical modeling of the dynamic response of a multi-bilinear-spring support system, University of Kentucky. Master’s Thesis. Paper 137 (2010)Google Scholar
  34. 34.
    Jankowski, K.: Dynamics of double pendulum with parametric vertical excitation, Technical University of Lodz. Master of Science Thesis (2011)Google Scholar
  35. 35.
    de Paula, A.S., Savi, M.A., Lagoudas, D.C.: Nonlinear dynamics of a SMA large-scale space structure. J. Braz. Soc. Mech. Sci. Eng. XXXIV, 401–412 (2012)CrossRefGoogle Scholar
  36. 36.
    Aguilar, L.T., Boiko, I.M., Fridman, L.M., Freidovich, L.B.: Generating oscillations in inertia wheel pendulum via two-relay controller. Int. J. Robust Nonlinear Control 22(3), 318–330 (2011)MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Aguilar, L.T., Boiko, I.M., Fridman, L.M., Iriarte, R.: Poincare Map-Based Design. Self-Oscillations in Dynamic Systems. Part I. Springer, Switzerland (2015)CrossRefMATHGoogle Scholar
  38. 38.
    Schmitt, J.M., Bayly, P.V., Peters, D.A.: Stabilization of periodic flap-lag dynamics in rotorcraft. In: IUTAM Symposium on New Applications of Nonlinear and Chaotic Dynamics in Mechanics. vol. 63, pp. 493-502. Springer, Netherlands (1999)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.School of Mathematics, Computer Science and EngineeringCity University of LondonLondonUK

Personalised recommendations