Advertisement

Nonlinear Dynamics

, Volume 88, Issue 4, pp 2889–2897 | Cite as

A novel route to chaotic bursting in the parametrically driven Lorenz system

Original Paper

Abstract

This paper aims to report a novel route to chaotic bursting, i.e., the route via bifurcation delay and chaos crisis, based on the parametrically driven Lorenz system. A distinct bifurcation delay behavior can be observed when the slowly varying parameter increases through pitchfork bifurcation point of the Lorenz system. The delay behavior may terminate at chaotic parameter areas, which leads to a catastrophic transition from the origin to the Lorenz strange attractor, and this accounts for the appearance of the chaotically active phase. On the other hand, the Lorenz strange attractor may collide with its attraction basin and suddenly disappears by boundary crisis and therein lies the occurrence of quiescence. Based on this, we propose the novel route to chaotic bursting and a new chaotic bursting pattern which we call “delayed pitchfork/boundary crisis” bursting is obtained.

Keywords

Chaotic bursting Chaotically active state Delayed pitchfork bifurcation Boundary crisis 

Notes

Acknowledgements

The authors express their gratitude to the associate editor and the reviewers whose comments and suggestions have helped the improvements in this paper. This work is supported by the National Natural Science Foundation of China (Grant Nos. 11572141, 11632008, 11472115, 11502091 and 11402226) and the Training Project for Young Backbone Teacher of Jiangsu University.

References

  1. 1.
    Lebovitz, N.R., Schaar, R.J.: Exchange of stabilities in autonomous systems-II. Vertical bifurcation. Stud. Appl. Math. 56, 1–50 (1977)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Haberman, R.: Slowly varying jump and transition phenomena associated with algebraic bifurcation problems. SIAM J. Appl. Math. 37, 69–106 (1979)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Jakobsson, E., Guttman, R.: Continuous stimulation and threshold of axons: the other legacy of kenneth cole. In: Adelman, W.J., Goldman, D.E. (eds.) The Biophysical Approach to Excitable Systems, pp. 197–211. Plenum, New York (1981)CrossRefGoogle Scholar
  4. 4.
    Erneux, T., Mandel, P.: Stationary, harmonic, and pulsed operations of an optically bistable laser with saturable absorber. II. Phys. Rev. A 30, 1902–1909 (1984)CrossRefGoogle Scholar
  5. 5.
    Erneux, T., Mandel, P.: Imperfect bifurcation with a slowly-varying control parameter. SIAM J. Appl. Math. 46, 1–15 (1986)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Arecchi, F.T., Gadomski, W., Meucci, R., Roversi, J.A.: Delayed bifurcation at the threshold of a swept gain CO\(_{2}\) laser. Opt. Commun. 70, 155–160 (1989)CrossRefGoogle Scholar
  7. 7.
    Mandel, P., Erneux, T.: The slow passage through a steady bifurcation: delay and memory effects. J. Stat. Phys. 48, 1059–1070 (1987)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Baer, S.M., Erneux, T., Rinzel, J.: The slow passage through a Hopf bifurcation: delay, memory effects, and resonance. SIAM J. Appl. Math. 49, 55–71 (1989)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Rinzel, J., Baer, S.M.: Threshold for repetitive activity for a slow stimulus ramp: a memory effect and its dependence on fluctuations. Biophys. J. 54, 551–555 (1988)CrossRefGoogle Scholar
  10. 10.
    Neishtadt, A.I.: Persistence of stability loss for dynamical bifurcations I. Differ. Equ. 23, 1385–1391 (1987). Transl. from Diff. Urav. 23, 2060–2067 (1987)MATHGoogle Scholar
  11. 11.
    Neishtadt, A.I.: Persistence of stability loss for dynamical bifurcations II. Differ. Equ. 24, 171–176 (1988). Transl. from Diff. Urav. 24, 226–233 (1988)Google Scholar
  12. 12.
    Su, J.: Delayed oscillation phenomena in the FitzHugh Nagumo equation. J. Differ. Equ. 105, 180–215 (1993)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Holden, L., Erneux, T.: Slow passage through a Hopf bifurcation: from oscillatory to steady state. SIAM J. Appl. Math. 53, 1045–1058 (1993)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Maree, G.J.M.: Slow passage through a pitchfork bifurcation. SIAM J. Appl. Math. 56, 889–918 (1996)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Diminnie, D.C., Haberman, R.: Slow passage through a saddle-center bifurcation. J. Nonlinear Sci. 10, 197–221 (2000)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Davies, H.D., Rangavajhula, K.: A period-doubling bifurcation with slow parametric variation and additive noise. Proc. R. Soc. Lond. A 457, 2965–2982 (2001)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Sriram, K., Gopinathan, M.S.: Effects of delayed linear electrical perturbation of the Belousov-Zhabotinsky reaction: a case of complex mixed mode oscillations in a batch reactor. React. Kinet. Catal. Lett. 79, 341–349 (2003)CrossRefGoogle Scholar
  18. 18.
    Lu, Q.S., Gu, H.G., Yang, Z.Q., Shi, X., Duan, L.X., Zheng, Y.H.: Dynamics of fiering patterns, synchronization and resonances in neuronal electrical activities: experiments and analysis. Acta Mech. Sin. 24, 593–628 (2008)CrossRefMATHGoogle Scholar
  19. 19.
    Roberts, A., Widiasih, E., Jones, C.K.R.T., Wechselberger, M.: Mixed mode oscillations in a conceptual climate model. Physica D 292–293, 70–83 (2015)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Ngueuteu, G.S.M., Yamapi, R., Woafo, P.: Quasi-static transient and mixed mode oscillations induced by fractional derivatives effect on the slow flow near folded singularity. Nonlinear Dyn. 78, 2717–2729 (2014)CrossRefGoogle Scholar
  21. 21.
    Lisman, J.E.: Bursts as a unit of neuronal information: making unreliable synapses reliable. Trends Neurosci. 20, 38–43 (1997)CrossRefGoogle Scholar
  22. 22.
    Liepelt, S., Freund, J.A., Schimansky-Geier, L., Neiman, A., Russell, D.F.: Information processing in noisy burster models of sensory neurons. J. Theor. Biol. 237, 30–40 (2005)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Rinzel, J.: Bursting oscillation in an excitable membrane model. In: Sleeman, B.D., Jarvis, R.J. (eds.) Ordinary and Partial Differential Equations, pp. 304–316. Springer, Berlin (1985)CrossRefGoogle Scholar
  24. 24.
    Han, X.J., Bi, Q.S.: Bursting oscillations in Duffings equation with slowly changing external forcing. Commun. Nonlinear Sci. Numer. Simul. 16, 4146–4152 (2011)CrossRefMATHGoogle Scholar
  25. 25.
    Simo, H., Woafo, P.: Bursting oscillations in the electromechanical system. Mech. Res. Commun. 38, 537–541 (2011)CrossRefMATHGoogle Scholar
  26. 26.
    Simo, H., Woafo, P.: Effects of asymmetric potentials on bursting oscillations in Duffing oscillator. Optik 127, 8760–8766 (2016)CrossRefGoogle Scholar
  27. 27.
    Kingni, S.T., Nana, B., Mbouna Ngueuteu, G.S., Woafo, P., Danckaert, J.: Bursting oscillation in a 3D system with asymmetrically distributed equilibria: mechanism, electronic implementation and fractional derivation effect. Chaos Solitons Fractals 71, 29–40 (2015)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Li, X.H., Hou, J.Y.: Bursting phenomenon in a piecewise mechanical system with parameter perturbation in stiffness. Int. J. Non-Linear Mech. 81, 165–176 (2016)CrossRefGoogle Scholar
  29. 29.
    Li, X.H., Bi, Q.S.: Bursting oscillation in CO oxidation with small excitation and the enveloping slow-fast analysis method. Chin. Phys. B 21, 060505 (2012)CrossRefGoogle Scholar
  30. 30.
    Han, X.J., Bi, Q.S., Ji, P., Kurths, J.: Fast-slow analysis for parametrically and externally excited systems with two slow rationally related excitation frequencies. Phys. Rev. E 92, 012911 (2015)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Han, X.J., Yu, Y., Zhang, C., Xia, F.B., Bi, Q.S.: Turnover of hysteresis determines novel bursting in Duffing system with multiple-frequency external forcings. Int. J. Non-Linear Mech. 89, 69–74 (2017)CrossRefGoogle Scholar
  32. 32.
    Gu, H.G.: Experimental observation of transition from chaotic bursting to chaotic spiking in a neural pacemaker. Chaos 23, 023126 (2013)CrossRefGoogle Scholar
  33. 33.
    Viana, R.L., Pinto, S.E., Grebogi, C.: Chaotic bursting at the onset of unstable dimension variability. Phys. Rev. E 66, 046213 (2002)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Izhikevich, E.M.: Neural excitability, spiking and bursting. Int. J. Bifurc. Chaos 10, 1171–1266 (2000)MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory. Springer, New York (1995)CrossRefMATHGoogle Scholar
  36. 36.
    Terman, D.: Chaotic spikes arising from a model of bursting in excitable membranes. SIAM J. Appl. Math. 51, 1418–1450 (1991)MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Han, S.K., Postnov, D.E.: Chaotic bursting as chaotic itinerancy in coupled neural oscillators. Chaos 13, 1105–1109 (2003)MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    Zhang, F., Zhang, W., Lu, Q.S., Su, J.Z.: Transition mechanisms between periodic and chaotic bursting neurons. In: Wang, R.B., Gu, F.J. (eds.) Advances in Cognitive Neurodynamics (II), pp. 247–251. Springer, Dordrecht (2011)CrossRefGoogle Scholar
  39. 39.
    Pomeau, Y., Manneville, P.: Intermittent transition to turbulence in dissipative dynamical systems. Commun. Math. Phys. 74, 189–197 (1980)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Platt, N., Spiegel, E.A., Tresser, C.: On-off intermittency: A mechanism for bursting. Phys. Rev. Lett. 70, 279–282 (1993)Google Scholar
  41. 41.
    Almutairi, J.H., Jones, L.E., Sandham, N.D.: Intermittent bursting of a laminar separation bubble on an airfoil. AIAA J. 48, 414–426 (2010)CrossRefGoogle Scholar
  42. 42.
    Gu, H.G., Xiao, W.W.: Difference between intermittent chaotic bursting and spiking of neural firing patterns. Int. J. Bifurcat. Chaos 24, 1450082 (2014)MathSciNetCrossRefGoogle Scholar
  43. 43.
    Holden, L., Erneux, T.: Understanding bursting oscillations as periodic slow passages through bifurcation and limit points. J. Math. Biol. 31, 351–365 (1993)MathSciNetCrossRefMATHGoogle Scholar
  44. 44.
    Izhikevich, E.M.: Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting. MIT Press, Cambridge (2007)Google Scholar
  45. 45.
    Golubitsky, M., Josic, K., Kaper, T.: An unfolding theory approach to bursting in fast-slow systems. In: Krausskopf, B., Newton, P., Weinstein, A. (eds.) Global Analysis of Dynamical Systems, Dedicated to Floris Takens, pp. 243–286. Springer, Berlin (2002)Google Scholar
  46. 46.
    Han, X.J., Bi, Q.S., Zhang, C., Yu, Y.: Delayed bifurcations to repetitive spiking and classification of delay-induced bursting. Int. J. Bifurcat. Chaos 24, 1450098 (2014)MathSciNetCrossRefMATHGoogle Scholar
  47. 47.
    Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141 (1963)CrossRefGoogle Scholar
  48. 48.
    Sparrow, C.: The Lorenz Equations. Springer, Berlin (1982)MATHGoogle Scholar
  49. 49.
    Wiggins, S.: Global Bifurcation and Chaos: Analytical Methods. Springer, New York (1988)CrossRefMATHGoogle Scholar
  50. 50.
    Grebogi, C., Ott, E., Yorke, J.A.: Crises, sudden changes in chaotic attractors, and transient chaos. Physica D 7, 181–200 (1983)MathSciNetCrossRefMATHGoogle Scholar
  51. 51.
    Grebogi, C., Ott, E., Romeiras, F., Yorke, J.A.: Critical exponents for crisis-induced intermittency. Phys. Rev. A 36, 5365–5380 (1987)MathSciNetCrossRefGoogle Scholar
  52. 52.
    Berglund, N., Gentz, B.: Pathwise description of dynamic pitchfork bifurcations with additive noise. Probab. Theory Relat. Fields 122, 341–388 (2002)MathSciNetCrossRefMATHGoogle Scholar
  53. 53.
    Han, X.J., Bi, Q.S.: Generation of hysteresis cycles with two and four jumps in a shape memory oscillator. Nonlinear Dyn. 72, 407–415 (2013)MathSciNetCrossRefGoogle Scholar
  54. 54.
    Menck, P.J., Heitzig, J., Marwan, N., Kurths, J.: How basin stability complements the linear-stability paradigm. Nat. Phys. 9, 89–92 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Faculty of Civil Engineering and MechanicsJiangsu UniversityZhenjiangPeople’s Republic of China
  2. 2.School of ScienceNantong UniversityNantongPeople’s Republic of China
  3. 3.School of Mathematical ScienceHuaiyin Normal UniversityHuaianPeople’s Republic of China

Personalised recommendations