Skip to main content
Log in

A novel route to chaotic bursting in the parametrically driven Lorenz system

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper aims to report a novel route to chaotic bursting, i.e., the route via bifurcation delay and chaos crisis, based on the parametrically driven Lorenz system. A distinct bifurcation delay behavior can be observed when the slowly varying parameter increases through pitchfork bifurcation point of the Lorenz system. The delay behavior may terminate at chaotic parameter areas, which leads to a catastrophic transition from the origin to the Lorenz strange attractor, and this accounts for the appearance of the chaotically active phase. On the other hand, the Lorenz strange attractor may collide with its attraction basin and suddenly disappears by boundary crisis and therein lies the occurrence of quiescence. Based on this, we propose the novel route to chaotic bursting and a new chaotic bursting pattern which we call “delayed pitchfork/boundary crisis” bursting is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Lebovitz, N.R., Schaar, R.J.: Exchange of stabilities in autonomous systems-II. Vertical bifurcation. Stud. Appl. Math. 56, 1–50 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  2. Haberman, R.: Slowly varying jump and transition phenomena associated with algebraic bifurcation problems. SIAM J. Appl. Math. 37, 69–106 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  3. Jakobsson, E., Guttman, R.: Continuous stimulation and threshold of axons: the other legacy of kenneth cole. In: Adelman, W.J., Goldman, D.E. (eds.) The Biophysical Approach to Excitable Systems, pp. 197–211. Plenum, New York (1981)

    Chapter  Google Scholar 

  4. Erneux, T., Mandel, P.: Stationary, harmonic, and pulsed operations of an optically bistable laser with saturable absorber. II. Phys. Rev. A 30, 1902–1909 (1984)

    Article  Google Scholar 

  5. Erneux, T., Mandel, P.: Imperfect bifurcation with a slowly-varying control parameter. SIAM J. Appl. Math. 46, 1–15 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  6. Arecchi, F.T., Gadomski, W., Meucci, R., Roversi, J.A.: Delayed bifurcation at the threshold of a swept gain CO\(_{2}\) laser. Opt. Commun. 70, 155–160 (1989)

    Article  Google Scholar 

  7. Mandel, P., Erneux, T.: The slow passage through a steady bifurcation: delay and memory effects. J. Stat. Phys. 48, 1059–1070 (1987)

    Article  MathSciNet  Google Scholar 

  8. Baer, S.M., Erneux, T., Rinzel, J.: The slow passage through a Hopf bifurcation: delay, memory effects, and resonance. SIAM J. Appl. Math. 49, 55–71 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  9. Rinzel, J., Baer, S.M.: Threshold for repetitive activity for a slow stimulus ramp: a memory effect and its dependence on fluctuations. Biophys. J. 54, 551–555 (1988)

    Article  Google Scholar 

  10. Neishtadt, A.I.: Persistence of stability loss for dynamical bifurcations I. Differ. Equ. 23, 1385–1391 (1987). Transl. from Diff. Urav. 23, 2060–2067 (1987)

    MATH  Google Scholar 

  11. Neishtadt, A.I.: Persistence of stability loss for dynamical bifurcations II. Differ. Equ. 24, 171–176 (1988). Transl. from Diff. Urav. 24, 226–233 (1988)

    Google Scholar 

  12. Su, J.: Delayed oscillation phenomena in the FitzHugh Nagumo equation. J. Differ. Equ. 105, 180–215 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  13. Holden, L., Erneux, T.: Slow passage through a Hopf bifurcation: from oscillatory to steady state. SIAM J. Appl. Math. 53, 1045–1058 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  14. Maree, G.J.M.: Slow passage through a pitchfork bifurcation. SIAM J. Appl. Math. 56, 889–918 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  15. Diminnie, D.C., Haberman, R.: Slow passage through a saddle-center bifurcation. J. Nonlinear Sci. 10, 197–221 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. Davies, H.D., Rangavajhula, K.: A period-doubling bifurcation with slow parametric variation and additive noise. Proc. R. Soc. Lond. A 457, 2965–2982 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Sriram, K., Gopinathan, M.S.: Effects of delayed linear electrical perturbation of the Belousov-Zhabotinsky reaction: a case of complex mixed mode oscillations in a batch reactor. React. Kinet. Catal. Lett. 79, 341–349 (2003)

    Article  Google Scholar 

  18. Lu, Q.S., Gu, H.G., Yang, Z.Q., Shi, X., Duan, L.X., Zheng, Y.H.: Dynamics of fiering patterns, synchronization and resonances in neuronal electrical activities: experiments and analysis. Acta Mech. Sin. 24, 593–628 (2008)

    Article  MATH  Google Scholar 

  19. Roberts, A., Widiasih, E., Jones, C.K.R.T., Wechselberger, M.: Mixed mode oscillations in a conceptual climate model. Physica D 292–293, 70–83 (2015)

    Article  MathSciNet  Google Scholar 

  20. Ngueuteu, G.S.M., Yamapi, R., Woafo, P.: Quasi-static transient and mixed mode oscillations induced by fractional derivatives effect on the slow flow near folded singularity. Nonlinear Dyn. 78, 2717–2729 (2014)

    Article  Google Scholar 

  21. Lisman, J.E.: Bursts as a unit of neuronal information: making unreliable synapses reliable. Trends Neurosci. 20, 38–43 (1997)

    Article  Google Scholar 

  22. Liepelt, S., Freund, J.A., Schimansky-Geier, L., Neiman, A., Russell, D.F.: Information processing in noisy burster models of sensory neurons. J. Theor. Biol. 237, 30–40 (2005)

    Article  MathSciNet  Google Scholar 

  23. Rinzel, J.: Bursting oscillation in an excitable membrane model. In: Sleeman, B.D., Jarvis, R.J. (eds.) Ordinary and Partial Differential Equations, pp. 304–316. Springer, Berlin (1985)

    Chapter  Google Scholar 

  24. Han, X.J., Bi, Q.S.: Bursting oscillations in Duffings equation with slowly changing external forcing. Commun. Nonlinear Sci. Numer. Simul. 16, 4146–4152 (2011)

    Article  MATH  Google Scholar 

  25. Simo, H., Woafo, P.: Bursting oscillations in the electromechanical system. Mech. Res. Commun. 38, 537–541 (2011)

    Article  MATH  Google Scholar 

  26. Simo, H., Woafo, P.: Effects of asymmetric potentials on bursting oscillations in Duffing oscillator. Optik 127, 8760–8766 (2016)

    Article  Google Scholar 

  27. Kingni, S.T., Nana, B., Mbouna Ngueuteu, G.S., Woafo, P., Danckaert, J.: Bursting oscillation in a 3D system with asymmetrically distributed equilibria: mechanism, electronic implementation and fractional derivation effect. Chaos Solitons Fractals 71, 29–40 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. Li, X.H., Hou, J.Y.: Bursting phenomenon in a piecewise mechanical system with parameter perturbation in stiffness. Int. J. Non-Linear Mech. 81, 165–176 (2016)

    Article  Google Scholar 

  29. Li, X.H., Bi, Q.S.: Bursting oscillation in CO oxidation with small excitation and the enveloping slow-fast analysis method. Chin. Phys. B 21, 060505 (2012)

    Article  Google Scholar 

  30. Han, X.J., Bi, Q.S., Ji, P., Kurths, J.: Fast-slow analysis for parametrically and externally excited systems with two slow rationally related excitation frequencies. Phys. Rev. E 92, 012911 (2015)

    Article  MathSciNet  Google Scholar 

  31. Han, X.J., Yu, Y., Zhang, C., Xia, F.B., Bi, Q.S.: Turnover of hysteresis determines novel bursting in Duffing system with multiple-frequency external forcings. Int. J. Non-Linear Mech. 89, 69–74 (2017)

    Article  Google Scholar 

  32. Gu, H.G.: Experimental observation of transition from chaotic bursting to chaotic spiking in a neural pacemaker. Chaos 23, 023126 (2013)

    Article  Google Scholar 

  33. Viana, R.L., Pinto, S.E., Grebogi, C.: Chaotic bursting at the onset of unstable dimension variability. Phys. Rev. E 66, 046213 (2002)

    Article  MathSciNet  Google Scholar 

  34. Izhikevich, E.M.: Neural excitability, spiking and bursting. Int. J. Bifurc. Chaos 10, 1171–1266 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  35. Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory. Springer, New York (1995)

    Book  MATH  Google Scholar 

  36. Terman, D.: Chaotic spikes arising from a model of bursting in excitable membranes. SIAM J. Appl. Math. 51, 1418–1450 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  37. Han, S.K., Postnov, D.E.: Chaotic bursting as chaotic itinerancy in coupled neural oscillators. Chaos 13, 1105–1109 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  38. Zhang, F., Zhang, W., Lu, Q.S., Su, J.Z.: Transition mechanisms between periodic and chaotic bursting neurons. In: Wang, R.B., Gu, F.J. (eds.) Advances in Cognitive Neurodynamics (II), pp. 247–251. Springer, Dordrecht (2011)

    Chapter  Google Scholar 

  39. Pomeau, Y., Manneville, P.: Intermittent transition to turbulence in dissipative dynamical systems. Commun. Math. Phys. 74, 189–197 (1980)

    Article  MathSciNet  Google Scholar 

  40. Platt, N., Spiegel, E.A., Tresser, C.: On-off intermittency: A mechanism for bursting. Phys. Rev. Lett. 70, 279–282 (1993)

  41. Almutairi, J.H., Jones, L.E., Sandham, N.D.: Intermittent bursting of a laminar separation bubble on an airfoil. AIAA J. 48, 414–426 (2010)

    Article  Google Scholar 

  42. Gu, H.G., Xiao, W.W.: Difference between intermittent chaotic bursting and spiking of neural firing patterns. Int. J. Bifurcat. Chaos 24, 1450082 (2014)

    Article  MathSciNet  Google Scholar 

  43. Holden, L., Erneux, T.: Understanding bursting oscillations as periodic slow passages through bifurcation and limit points. J. Math. Biol. 31, 351–365 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  44. Izhikevich, E.M.: Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting. MIT Press, Cambridge (2007)

    Google Scholar 

  45. Golubitsky, M., Josic, K., Kaper, T.: An unfolding theory approach to bursting in fast-slow systems. In: Krausskopf, B., Newton, P., Weinstein, A. (eds.) Global Analysis of Dynamical Systems, Dedicated to Floris Takens, pp. 243–286. Springer, Berlin (2002)

    Google Scholar 

  46. Han, X.J., Bi, Q.S., Zhang, C., Yu, Y.: Delayed bifurcations to repetitive spiking and classification of delay-induced bursting. Int. J. Bifurcat. Chaos 24, 1450098 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  47. Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141 (1963)

    Article  Google Scholar 

  48. Sparrow, C.: The Lorenz Equations. Springer, Berlin (1982)

    MATH  Google Scholar 

  49. Wiggins, S.: Global Bifurcation and Chaos: Analytical Methods. Springer, New York (1988)

    Book  MATH  Google Scholar 

  50. Grebogi, C., Ott, E., Yorke, J.A.: Crises, sudden changes in chaotic attractors, and transient chaos. Physica D 7, 181–200 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  51. Grebogi, C., Ott, E., Romeiras, F., Yorke, J.A.: Critical exponents for crisis-induced intermittency. Phys. Rev. A 36, 5365–5380 (1987)

    Article  MathSciNet  Google Scholar 

  52. Berglund, N., Gentz, B.: Pathwise description of dynamic pitchfork bifurcations with additive noise. Probab. Theory Relat. Fields 122, 341–388 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  53. Han, X.J., Bi, Q.S.: Generation of hysteresis cycles with two and four jumps in a shape memory oscillator. Nonlinear Dyn. 72, 407–415 (2013)

    Article  MathSciNet  Google Scholar 

  54. Menck, P.J., Heitzig, J., Marwan, N., Kurths, J.: How basin stability complements the linear-stability paradigm. Nat. Phys. 9, 89–92 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to the associate editor and the reviewers whose comments and suggestions have helped the improvements in this paper. This work is supported by the National Natural Science Foundation of China (Grant Nos. 11572141, 11632008, 11472115, 11502091 and 11402226) and the Training Project for Young Backbone Teacher of Jiangsu University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiujing Han.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, X., Yu, Y. & Zhang, C. A novel route to chaotic bursting in the parametrically driven Lorenz system. Nonlinear Dyn 88, 2889–2897 (2017). https://doi.org/10.1007/s11071-017-3418-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3418-0

Keywords

Navigation