Nonlinear Dynamics

, Volume 88, Issue 4, pp 2783–2795 | Cite as

Amplitude death in intrinsic time-delayed chaotic oscillators with direct–indirect coupling: the existence of death islands

  • Debabrata Biswas
  • Nirmalendu Hui
  • Tanmoy Banerjee
Original Paper
  • 196 Downloads

Abstract

We investigate the transition between oscillatory and amplitude death (AD) states and the existence of death islands in intrinsic time-delayed chaotic oscillators under the simultaneous presence of diffusive (direct) and environmental (indirect) coupling. Studies in two-parameter space reveal that depending upon parameters and intrinsic time delays the coupling can bring the oscillators to the AD state and again can revive the system to oscillatory states, thus creating death islands in parameter space; this observation is in sharp contrast to the death scenario of non-delayed oscillators under the same coupling scheme where no death islands are formed. Using a linear stability analysis, we derive the explicit conditions for different transition scenarios. We use a continuation package for the time-delay systems to precisely identify the zone of AD and its islands and their origin. We also extend our study to the network of oscillators and show that the observed results are general for a large number of oscillators, too. Finally, we demonstrate our results experimentally to verify the analytical and numerical findings.

Keywords

Amplitude death Intrinsic time-delayed system Chaos Diffusive and environmental coupling 

Notes

Acknowledgements

D.B. thankfully acknowledges the financial support from CSIR, New Delhi, India. T.B. acknowledges the financial support from SERB, Department of Science and Technology (DST), India [Project Grant No.: SB /FTP/PS-005/2013].

References

  1. 1.
    Koseska, A., Volkov, E., Kurths, J.: Oscillation quenching mechanisms: amplitude vs. oscillation death. Phys. Rep. 531, 173 (2013)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Saxena, G., Prasad, A., Ramaswamy, R.: Amplitude death: the emergence of stationarity in coupled nonlinear systems. Phys. Rep. 521, 205 (2012)CrossRefGoogle Scholar
  3. 3.
    Banerjee, T., Biswas, D.: Amplitude death and synchronized states in nonlinear time-delay systems coupled through mean-field diffusion. Chaos 23, 043101 (2013)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Reddy, D.V.R., Sen, A., Johnston, G.L.: Time delay induced death in coupled limit cycle oscillators. Phy. Rev. Lett. 80, 5109 (1998)CrossRefGoogle Scholar
  5. 5.
    Reddy, D.V.R., Sen, A., Johnston, G.L.: Experimental evidence of time-delay-induced death in coupled limit-cycle oscillators. Phy. Rev. Lett. 85, 3381 (2000)CrossRefGoogle Scholar
  6. 6.
    Prasad, A.: Amplitude death in coupled chaotic oscillators. Phy. Rev. E 72, 056204 (2005)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Kumar, P., Prasad, A., Ghosh, R.: Stable phase-locking of an external-cavity diode laser subjected to external optical injection. J. Phys. B 41, 135402 (2008)CrossRefGoogle Scholar
  8. 8.
    Ermentrout, G.B., Kopell, N.: Oscillator death in systems of coupled neural oscillators. SIAM J. Appl. Math. 50, 125 (1990)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Zhang, H., Xu, D., Lu, C., Qi, E., Hu, J., Wu, Y.: Amplitude death of a multi-module floating airport. Nonlinear Dyn. 79, 2385–2394 (2015)CrossRefGoogle Scholar
  10. 10.
    Ghosh, D., Banerjee, T.: Transitions among the diverse oscillation quenching states induced by the interplay of direct and indirect coupling. Phy. Rev. E 90, 062908 (2014)CrossRefGoogle Scholar
  11. 11.
    Zakharova, A., Kapeller, M., Schöll, E.: Chimera death: symmetry breaking in dynamical networks. Phy. Rev. Lett. 112, 154101 (2014)CrossRefGoogle Scholar
  12. 12.
    Banerjee, T.: Mean-field diffusion induced chimera death state. EPL 110, 60003 (2015)CrossRefGoogle Scholar
  13. 13.
    Poel, W., Zakharova, A., Schöll, E.: Partial synchronization and partial amplitude death in mesoscale network motifs. Phy. Rev. E 91, 022915 (2015)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Liu, W., Xiao, J., Yang, J.: Partial amplitude death in coupled chaotic oscillators. Phy. Rev. E 72, 057201 (2005)CrossRefGoogle Scholar
  15. 15.
    Leonov, G.A., Kuznetsov, N.V.: Hidden attractors in dynamical systems. From hidden oscillations in Hilbert-Kolmogorov, Aizerman, and Kalman problems to hidden chaotic attractor in Chua circuits. Int. J. Bifurc. Chaos 23, 1330002 (2013)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Leonov, G.A., Kuznetsov, N.V., Vagaitsev, V.I.: Hidden attractor in smooth Chua systems. Physica D 241, 1482–1486 (2012)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Leonov, G.A., Kuznetsov, N.V., Vagaitsev, V.I.: Localization of hidden Chua’s attractors. Phys. Lett. A 375, 2230–2233 (2011)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Ray, A., Saha, D.C., Saha, P., Chowdhury, A.R.: Generation of amplitude death and rhythmogenesis in coupled hidden attractor system with experimental demonstration. Nonlinear Dyn. (2016). doi: 10.1007/s11071-016-3121-6 Google Scholar
  19. 19.
    Palazzi, M.J., Cosenzaa, M.G.: Amplitude death in coupled robust-chaos oscillators. Eur. Phys. J. Special Top. 223, 2831–2836 (2014)CrossRefGoogle Scholar
  20. 20.
    Zou, W., Senthilkumar, D.V., Nagao, R., Kiss, I.Z., Tang, Y., Koseska, A., Duan, J., Kurths, J.: Restoration of rhythmicity in diffusively coupled dynamical networks. Nat. Commun. 6, 7709 (2015)CrossRefGoogle Scholar
  21. 21.
    Ghosh, D., Banerjee, T., Kurths, J.: Revival of oscillation from mean-field-induced death: theory and experiment. Phys. Rev. E 92, 052908 (2015)CrossRefGoogle Scholar
  22. 22.
    Atay, F.M.: Distributed Delays Facilitate Amplitude Death of Coupled Oscillators. Phy. Rev. Lett 91, 094101 (2003)CrossRefGoogle Scholar
  23. 23.
    Konishi, K., Senda, K., Kokame, H.: Amplitude death in time-delay nonlinear oscillators coupled by diffusive connections. Phys. Rev. E 78(5), 056216 (2008)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Karnatak, R., Ramaswamy, R., Prasad, A.: Amplitude death in identical coupled oscillators. Phys. Rev. E 76, 035201R (2007)CrossRefGoogle Scholar
  25. 25.
    Liu, W., Xiao, J., Li, L., Wu, Y., Lu, M.: Effects of gradient coupling on amplitude death in nonidentical oscillators. Nonlinear Dyn. 69, 1041–1050 (2012)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Sharma, A., Shrimali, M.D.: Amplitude death with mean-field diffusion. Phys. Rev. E 85, 057204 (2012)CrossRefGoogle Scholar
  27. 27.
    Ghosh, D., Banerjee, T.: Transition from amplitude to oscillation death under mean-field diffusive coupling. Phy. Rev. E 89, 052912 (2014)CrossRefGoogle Scholar
  28. 28.
    Sharma, A., Suresh, K., Thamilmaran, K., Prasad, A., Shrimali, M.D.: Effect of parameter mismatch and time delay interaction on density-induced amplitude death in coupled nonlinear oscillators. Nonlinear Dyn. 76, 1797–1806 (2014)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Sugitani, Y., Konishi, K., Hara, N.: Experimental verification of amplitude death induced by a periodic time-varying delay-connection. Nonlinear Dyn. 70, 2227–2235 (2015)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Bera, B.K., Hens, C., Bhowmick, S.K., Pal, P., Ghosh, D.: Transition from homogeneous to inhomogeneous steady states in oscillators under cyclic coupling. Phys. Lett. A 380, 130 (2016)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Bera, B.K., Hens, C., Ghosh, D.: Emergence of amplitude death scenario in a network of oscillators under repulsive delay interaction. Phys. Lett. A 380, 2366 (2016)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Resmi, V., Ambika, G., Amritkar, R.E.: General mechanism for amplitude death in coupled systems. Phy. Rev. E 84, 046212 (2011)CrossRefGoogle Scholar
  33. 33.
    Resmi, V., Ambika, G., Amritkar, R.E., Rangatajan, G.: Amplitude death in complex networks induced by environment. Phy. Rev. E 85, 046211 (2012)CrossRefGoogle Scholar
  34. 34.
    Majhi, S., Bera, B.K., Bhowmick, B.K., Ghosh, D.: Restoration of oscillation in network of oscillators in presence of direct and indirect interactions. Phys. Lett. A 380, 3617 (2016)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Song, X., Wang, C., Ma, J., Tang, J.: Transition of electric activity of neurons induced by chemical and electric autapses. Sci. China Technol. Sci. 58, 1007–1014 (2015)CrossRefGoogle Scholar
  36. 36.
    Ma, J., Qin, H., Song, X., Chu, R.: Pattern selection in neuronal network driven by electric autapses with diversity in time delays. Int. J. Mod. Phys. B 29, 1450239 (2015)CrossRefGoogle Scholar
  37. 37.
    Ma, J., Tang, J.: A review for dynamics of collective behaviors of network of neurons. Sci. China Technol. Sci. 58, 2038–2045 (2015)CrossRefGoogle Scholar
  38. 38.
    Le, L.B., Konishi, K., Naoyuki, H.: Design of amplitude death in a pair of time-delayed chaotic oscillators coupled by a multiple delay connection. In: Proceedings of NDES, pp. 1–4 (2012)Google Scholar
  39. 39.
    Konishi, K., Kokame, H.: Amplitude death in delayed chaotic systems coupled by diffusive connections. In: 2007 International Symposium on Nonlinear Theory and its Applications NOLTA’07, Vancouver, Canada, 16–19 Sept 2007Google Scholar
  40. 40.
    Le, L.B., Konishi, K., Kokame, H., Hara, N.: Amplitude death in a pair of time-delayed chaotic oscillators coupled by a static connection. In: 2010 International Symposium on Nonlinear Theory and its Applications NOLTA2010, Krakow, Poland, 5–8 Sept 2010Google Scholar
  41. 41.
    Banerjee, T., Biswas, D., Sarkar, B.C.: Design and analysis of a first order time-delayed chaotic system. Nonlinear Dyn. 70, 721 (2012)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Engelborghs, K., Luzyanina, T., Samaey, G.: DDE-BIFTOOL v. 2.00 user manual: A matlab package for bifurcation analysis of delay differential equations. In: Technical Report TW-330 (Department of Computer Science, K. U. Leuven, Leuven, Belgium, 2001) (2001)Google Scholar
  43. 43.
    Mackey, M.C., Glass, L.: Oscillation and chaos in physiological control system. Science 197, 287 (1977)Google Scholar
  44. 44.
    Ikeda, K., Daido, H., Akimoto, O.: Optical turbulence: chaotic behavior of transmitted light from a ring cavity. Phys. Rev. Lett. 45, 709 (1980)CrossRefGoogle Scholar
  45. 45.
    Resmi, V., Ambika, G., Amritkar, R.E.: Synchronized states in chaotic systems coupled indirectly through a dynamic environment. Phy. Rev. E 81, 046216 (2010)CrossRefGoogle Scholar
  46. 46.
    Banerjee, T., Biswas, D.: Synchronization in hyperchaotic time-delayed electronic oscillators coupled indirectly via a common environment. Nonlinear Dyn. 73, 2024 (2013)MathSciNetCrossRefGoogle Scholar
  47. 47.
    Panaggio, M.J., Abrams, D.M.: Chimera states: coexistence of coherence and incoherence in networks of coupled oscillators. Nonlinearity 28, R67 (2015)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Chaos and Complex Systems Research Laboratory, Department of PhysicsThe University of BurdwanBurdwanIndia

Personalised recommendations