Nonlinear Dynamics

, Volume 88, Issue 4, pp 2771–2782 | Cite as

Pinning cluster synchronization of delayed complex dynamical networks with nonidentical nodes and impulsive effects

Original Paper

Abstract

This paper studies the exponential cluster synchronization problem of complex dynamical networks with delayed couplings and nonidentical nodes. A new type of pinning impulsive control approach is proposed to achieve the exponential cluster synchronization of the considered network. By employing a time-dependent Lyapunov functional, less conservative cluster synchronization criteria are established in the form of linear matrix inequalities. Compared with the existing works, the constructed Lyapunov functional is related with impulse time sequence, which makes full use of the information on dynamical characteristic of synchronization error dynamics. Finally, a numerical example of typical chua’s system is given to illustrate the effectiveness and correctness of the theoretical results.

Keywords

Cluster synchronization Complex networks Nonidentical nodes Pinning impulsive control 

Notes

Acknowledgements

The authors are grateful to the reviewers and editors for their valuable comments and suggestions to improve the presentation of this paper. This work is supported by the National Natural Science Foundation of China (Nos. 61273015 and 61533006), China Scholarship Council (CSC), Key project of Natural Science Research of Anhui Provincial Department of Education and NSERC Canada.

References

  1. 1.
    Xie, Q., Chen, G., Bollt, E.: Hybrid chaos synchronization and its application in information processing. Math. Comput. Model. 35, 145–163 (2002)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Kouomou, Y., Woafo, P.: Cluster synchronization in coupled chaotic semiconductor lasers and application to switching in chaos-secured communication networks. Opt. Commun. 223, 283–293 (2003)CrossRefGoogle Scholar
  3. 3.
    Mirollo, R., Strogatz, S.: Synchronization of pulse-coupled biological oscillators. SIAM J. Appl. Math. 50, 1645–1662 (1990)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Xiao, Y., Xu, W., Li, X., Tang, S.: Adaptive complete synchronization of chaotic dynamical network with unknown and mismatched parameters. Chaos 17, 033118 (2007)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Hu, A., Xu, Z., Guo, L.: The existence of generalized synchronization of chaotic systems in complex networks. Chaos 20, 013112 (2010)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Zhang, Q., Zhao, J.: Projective and lag synchronization between general complex networks via impulsive control. Nonlinear Dyn. 67, 2519–2525 (2012)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Du, H., Shi, P., Lu, N.: Function projective synchronization in complex dynamical networks with delay via hybrid feedback control. Nonlinear Anal. Real World Appl. 14, 1182–1190 (2013)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Rosenblum, M., Pikovsky, A., Kurths, J.: Phase synchronization of chaotic oscillators. Phys. Rev. Lett. 76, 1804–1807 (1996)CrossRefMATHGoogle Scholar
  9. 9.
    Liu, X., Chen, T.: Cluster synchronization in directed networks via intermittent pinning control. IEEE Trans. Neural Netw. 22, 1009–1020 (2011)CrossRefGoogle Scholar
  10. 10.
    Ma, J., Song, X., Jin, W., Wang, C.: Autapse-induced synchronization in a coupled neuronal network. Chaos Solitons Fractals 80, 31–38 (2015)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Chen, W., Jiang, Z., Lu, X., Luo, S.: \(H_{\infty }\) synchronization for complex dynamical networks with coupling delays using distributed impulsive control. Nonlinear Anal. Hybrid syst. 17, 111–127 (2015)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Rulkov, N.: Images of synchronized chaos: Experiments with circuits. chaos 6, 262–279 (1996)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Cao, J., Li, L.: Cluster synchronization in an array of hybrid coupled neural networks with delay. Neural Netw. 22, 335–342 (2009)CrossRefMATHGoogle Scholar
  14. 14.
    Zhang, J., Ma, Z., Zhang, G.: Cluster synchronization induced by one-node clusters in networks with asymmetric negative couplings. Chaos 23, 043128 (2013)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Yu, C., Qin, J., Gao, H.: Cluster synchronization in directed networks of partial-state coupled linear systems under pinning control. Automatica 50, 2341–2349 (2014)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Su, H., Rong, Z., Chen, M., Wang, X., Chen, G., Wang, H.: Decentralized adaptive pinning control for cluster synchronization of complex dynamical networks. IEEE Trans. Cybern. 43, 394–399 (2013)CrossRefGoogle Scholar
  17. 17.
    Cai, G., Jiang, S., Cai, S., Tian, L.: Cluster synchronization of overlapping uncertain complex networks with time-varying impulse disturbances. Nonlinear Dyn. 80, 503–513 (2015)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Wu, W., Zhou, W., Chen, T.: Cluster synchronization of linearly coupled complex networks under pinning control. IEEE Trans. Circuits Syst. I(56), 829–839 (2009)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Wang, J., Feng, J., Xu, C., Zhao, Y.: Cluster synchronization of nonlinearly-coupled complex networks with nonidentical nodes and asymmetrical coupling matrix. Nonlinear Dyn. 67, 1635–1646 (2012)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Wang, Y., Cao, J.: Cluster synchronization in nonlinearly coupled delayed networks of non-identical dynamic systems. Nonlinear Anal. Real World Appl. 14, 842–851 (2013)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Qin, H., Wu, Y., Wang, C., Ma, J.: Emitting waves from defects in network with autapses. Commun. Nonlinear Sci. Num. Simulat. 23, 164–174 (2015)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Yang, X., Feng, Z., Feng, J., Cao, J.: Synchronization of discrete-time neural networks with delays and Markov jump topologies based on tracker information. Neural Networks 85, 157–164 (2017)CrossRefGoogle Scholar
  23. 23.
    Ma, J., Tang, J.: A review for dynamics of collective behaviors of network of neurons. Sci. China Tech. Sci. 58, 2038–2045 (2015)CrossRefGoogle Scholar
  24. 24.
    Wang, X., She, K., Zhong, S., Cheng, J.: Synchronization of complex networks with non-delayed and delayed couplings via adaptive feedback and impulsive pinning control. Nonlinear Dyn. 86, 165–176 (2016)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Ma, J., Qin, H., Song, X., Chu, R.: Pattern selection in neuronal network driven by electric autapses with diversity in time delays. International J. Phys. B 29, 1450239 (2015)CrossRefGoogle Scholar
  26. 26.
    Zhang, Y., Gu, D., Xu, S.: Global exponential adaptive synchronization of complex dynamical networks with neural-type neural network nodes and stochastic disturbances. IEEE Trans. Circuits Syst. I(60), 2539–2550 (2013)Google Scholar
  27. 27.
    Wu, Z., Shi, P., Su, H., Chu, J.: Exponential synchronization of neural networks with discrete and distributed delays under time-varying sampling. IEEE Trans. Neural Netw. Learn. Syst. 23, 1368–1376 (2012)CrossRefGoogle Scholar
  28. 28.
    Wang, J., Wu, H.: Synchronization criteria for impulsive complex dynamical networks with time-varying delay. Nonlinear Dyn. 70, 13–24 (2012)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Feng, J., Yang, P., Zhao, Y.: Cluster synchronization for nonlinearly time-varying delayed coupling complex networks with stochastic perturbation via periodically intermittent pinning control. Appl. Math. Comput. 291, 52–68 (2016)MathSciNetGoogle Scholar
  30. 30.
    Fan, C., Jiang, G., Jiang, F.: Synchronization between two complex dynamical networks using scalar signals under pinning control. IEEE Trans. Circuits Syst. I(57), 2991–2998 (2010)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Cai, S., Jia, Q., Liu, Z.: Cluster synchronization for directed heterogeneous dynamical networks via decentralized adaptive intermittent pinning control. Nonlinear Dyn. 82, 689–702 (2015)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Zhou, L., Wang, C., Du, S., Zhou, L.: Cluster synchronization on multiple nonlinearly coupled dynamical subnetworks of complex networks with nonidentical nodes. IEEE Trans. Neural Netw. Learn. Syst. (2016). doi: 10.1109/TNNLS.2016.2547463
  33. 33.
    Lu, J., Kurths, J., Cao, J., Mahdavi, N., Huang, C.: Synchronization control for nonlinear stochastic dynamical networks: Pinning impulsive strategy. IEEE Trans. Neural Netw. Learn. Syst. 23, 285–292 (2012)CrossRefGoogle Scholar
  34. 34.
    Liu, B., Lu, W., Chen, T.: Pinning consensus in networks of multiagents via a single impulsive controller. IEEE Trans. Neural Netw. Learn. Syst. 24, 1141–1149 (2013)CrossRefGoogle Scholar
  35. 35.
    Wu, Z., Liu, D., Ye, Q.: Pinning impulsive synchronization of complex-variable dynamical network. Commun. Nonlinear Sci. Num. Simulat. 20, 273–280 (2015)MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Wu, X., Lai, D., Lu, H.: Generalized synchronization of the fractional-order chaos in weighted complex dynamical networks with nonidentical nodes. Nonlinear Dyn. 69, 667–683 (2012)MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Zhao, J., Hill, D., Liu, T.: Synchronization of dynamical networks with nonidentical nodes: criteria and control. IEEE Trans. Circuits Syst. I(58), 584–594 (2011)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Li, X., Bohner, M.: An impulsive delay differential inequality and applications. Comput. Math. Appl. 64, 1875–1881 (2012)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.School of Information and Software EngineeringUniversity of Electronic Science and Technology of ChinaChengduPeople’s Republic of China
  2. 2.School of Mathematical SciencesUniversity of Electronic Science and Technology of ChinaChengduPeople’s Republic of China

Personalised recommendations