Nonlinear Dynamics

, Volume 88, Issue 4, pp 2735–2745 | Cite as

Disturbance observer based fault-tolerant control for cooperative spacecraft rendezvous and docking with input saturation

  • Kewei Xia
  • Wei Huo
Original Paper


A robust nonlinear control strategy is presented for a cooperative spacecraft rendezvous and docking maneuver, where the pursuer spacecraft is subject to input saturation and actuator faults. The nonlinear coupled models for relative attitude and relative position dynamics are expressed in the pursuer body-fixed frame. A novel control strategy based on feedback linearization framework is developed, and a second-order disturbance observer is employed to estimate and compensate all uncertainties including parametric uncertainties, external disturbances, input saturation and actuator faults. It is proved that the closed-loop systems are uniformly ultimately bounded by using Lyapunov theory. Numerical simulations are given to illustrate effectiveness of the proposed control strategy.


Spacecraft control Rendezvous and docking Fault-tolerant control Input saturation Disturbance observer 



This work was supported by National Natural Science Foundation of China (Nos. 61134005, 61327807), and National Key Development Program for Basic Research of China under Grant No. 2012CB821204, and the Academic Excellence Foundation of BUAA for Ph.D. Students.


  1. 1.
    Kristiansen, R., Nicklasson, P.J., Gravdahl, J.T.: Spacecraft coordination control in 6DOF: integrator backstepping vs passivity-based control. Automatica 44(11), 2896–2901 (2008)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Sun, H., Li, S., Fei, S.: A composite control scheme for 6DOF spacecraft formation control. Acta Astronaut. 69, 595–611 (2011)CrossRefGoogle Scholar
  3. 3.
    Chen, W.H.: Disturbance observer based control for nonlinear systems. IEEE/ASME Trans. Mechatron. 9(4), 706–710 (2004)CrossRefGoogle Scholar
  4. 4.
    Zou, Y., Huo, W.: Singularity-free nonlinear controller for a model-scaled autonomous helicopter. IET Control Theory Appl. 10(2), 210–219 (2016)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Zhang, F., Duan, G.R.: Integrated translational and rotational finite-time maneuver of a rigid spacecraft with actuator misalignment. IET Control Theory Appl. 6(9), 1192–1204 (2012)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Singla, P., Subbarao, K., Junkins, J.L.: Output feedback based adaptive control for spacecraft rendezvous and docking under measurement uncertainties. J. Guid. Control Dyn. 29(4), 892–902 (2006)CrossRefGoogle Scholar
  7. 7.
    Subbarao, K., Welsh, S.: Nonlinear control of motion synchronization for satellite proximity operations. J. Guid. Control Dyn. 31(5), 1284–1294 (2008)CrossRefGoogle Scholar
  8. 8.
    Farrell, J., Polycarpou, M., Sharma, M., et al.: Command filtered backstepping. IEEE Trans. Autom. Control 54(6), 1391–1395 (2009)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Sun, L., Huo, W.: 6DOF integrated adaptive backstepping control for spacecraft proximity operations. IEEE Trans. Aerosp. Electron. Syst. 51(3), 2433–2443 (2015)CrossRefGoogle Scholar
  10. 10.
    Shan, J.: Six-degree-of-freedom synchronised adaptive learning control for spacecraft formation flying. IET Control Theory Appl. 2(10), 930–949 (2008)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Bae, J., Kim, Y.: Adaptive controller design for spacecraft formation flying using sliding mode controller and neural networks. J. Frankl. Inst. 349, 578–603 (2012)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Yin, C., Cheng, Y., Chen, Y., et al.: Adaptive fractional-order switching-type control method design for 3D fractional-order nonlinear systems. Nonlinear Dyn. 82(1), 39–52 (2015)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Yin, C., Chen, Y., Zhong, S.: Fractional-order sliding mode based extremum seeking control of a class of nonlinear systems. Automatica 50(12), 3173–3181 (2014)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Xia, K., Huo, W.: Robust adaptive backstepping neural networks control for spacecraft rendezvous and docking with uncertainties. Nonlinear Dyn. 84(3), 1683–1695 (2016)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Cai, J., Wen, C., Su, H., et al.: Robust adaptive failure compensation of hysteretic actuators for a class of uncertain nonlinear systems. IEEE Trans. Autom. Control 58(9), 2388–2394 (2013)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Wang, W., Wen, C.: Adaptive actuator failure compensation control of uncertain nonlinear systems with guaranteed transient performance. Automatica 46, 2082–2091 (2010)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Bustan, D., Sani, S.K.H., Pariz, N.: Adaptive fault-tolerant spacecraft attitude control design with transient response control. IEEE/ASME Trans. Mechatron. 58(9), 2388–2394 (2013)Google Scholar
  18. 18.
    Hu, Q., Xiao, B.: Fault-tolerant sliding mode attitude control for flexible spacecraft under loss of actuator effectiveness. Nonlinear Dyn. 64, 13–23 (2011)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Dong, H., Hu, Q., Ma, G.: Dual-quaternion based fault-tolerant control for spacecraft formation flying with finite-time convergence. ISA Trans. 61, 87–94 (2016)CrossRefGoogle Scholar
  20. 20.
    Lv, Y., Hu, Q., Ma, G., et al.: 6 DOF synchronized control for spacecraft formation flying with input constraint and parameter uncertainties. ISA Trans. 50(4), 573–580 (2011)CrossRefGoogle Scholar
  21. 21.
    Xia, K., Huo, W.: Robust adaptive backstepping neural networks control for spacecraft rendezvous and docking with input saturation. ISA Trans. 62, 249–257 (2016)CrossRefMATHGoogle Scholar
  22. 22.
    Dong, W., Farrell, J., Polycarpou, M., et al.: Command filtered adaptive backstepping. IEEE Trans. Control Syst. Technol. 20(3), 566–580 (2012)CrossRefGoogle Scholar
  23. 23.
    Farrell, J., Sharma, M., Polycarpou, M.: Backstepping-based flight control with adaptive function approximation. J. Guid. Control Dyn. 28(6), 1089–1102 (2005)CrossRefGoogle Scholar
  24. 24.
    Sidi, M.J.: Spacecraft Dynamics and Control: A Practical Engineering Approach. Cambridge University Press, New York (1997)CrossRefGoogle Scholar
  25. 25.
    Kristiansen, R., Nicklasson, P.J.: Spacecraft formation flying: a review and new results on state feedback control. Acta Astronaut. 65(11), 1537–1552 (2009)CrossRefGoogle Scholar
  26. 26.
    Schaub, H., Junkins, J.L.: Analytical Mechanics of Space Systems. AIAA Education Series, AIAA, Reston (2003)CrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.The Seventh Research Division, Science and Technology on Aircraft Control LaboratoryBeihang UniversityBeijingPeople’s Republic of China

Personalised recommendations