Nonlinear Dynamics

, Volume 88, Issue 4, pp 2609–2627 | Cite as

A physically meaningful new approach to parametric excitation and attenuation of oscillations in nonlinear systems

Original Paper
  • 132 Downloads

Abstract

Parametric excitation of a nonlinear physical pendulum by modulation of its moment of inertia is analyzed in terms of physics as an example of the suggested approach. The modulation is provided by a redistribution of auxiliary masses. The system is investigated both analytically and with the help of computer simulations. The threshold and other characteristics of parametric resonance are found and discussed in detail. The role of nonlinear properties of the physical system in restricting the resonant swinging is emphasized. Phase locking between the drive and oscillations of the pendulum and the phenomenon of parametric autoresonance are investigated. The boundaries of parametric instability are determined as functions of the modulation depth and the quality factor. The feedback providing active optimal control of amplification and attenuation of oscillations is analyzed. An effective method of suppressing undesirable rotary oscillations of suspended constructions is suggested.

Keywords

Parametric resonance Active control Phase locking Autoresonance Bifurcations Instability ranges 

References

  1. 1.
    Nayfeh, Ali H., Mook, Dean T.: Nonlinear Oscillations. Wiley, Hoboken (1995)CrossRefMATHGoogle Scholar
  2. 2.
    Broer, H.W., Hoveijn, I., van Noort, M., Simó, C., Vegter, G.: The parametrically forced pendulum: a case study in \(1\frac{1}{2}\) degree of freedom. J. Dyn. Differ. Eq. 16, 897–947 (2004)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Butikov, E.I.: On the dynamic stabilization of an inverted pendulum. Am. J. Phys. 69, 755–768 (2001)CrossRefGoogle Scholar
  4. 4.
    Butikov, E.I.: Subharmonic resonances of the parametrically driven pendulum. J. Phys. A Math. Gen. 35, 6209–6231 (2002)CrossRefGoogle Scholar
  5. 5.
    Butikov, E.I.: Regular and chaotic motions of the parametrically forced pendulum: theory and simulations. Computational science–ICCS 2002. LNCS 2331, pp. 1154–1169. Springer, Berlin (2009)Google Scholar
  6. 6.
    Butikov, E.I.: An improved criterion for Kapitza’s pendulum stability. J. Phys. A Math. Theor. 44, 295202 (16 pp) (2011)Google Scholar
  7. 7.
    Curry, S.M.: How children swing. Am. J. Phys. 44, 924–926 (1976)Google Scholar
  8. 8.
    Tea Jr., P.L., Falk, H.: Pumping on a swing. Am. J. Phys. 36, 1165–1166 (1968)CrossRefGoogle Scholar
  9. 9.
    Case, W.: The pumping of a swing from the standing position. Am. J. Phys. 64, 215–220 (1996)CrossRefGoogle Scholar
  10. 10.
    Pinsky, M.A., Zevin, A.A.: Oscillations of a pendulum with a periodically varying length and a model of swing. Int. J. Nonlinear Mech. 34, 105–109 (1999)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Belyakov, A.O., Seyranian, A.P., Luongo, A.: Dynamics of the pendulum with periodically varying length. Phys. D 238, 1589–1597 (2009)CrossRefMATHGoogle Scholar
  12. 12.
    Stilling, D., Szyskowski, W.: Controlling angular oscillations through mass reconfiguration: a variable length pendulum case. Int. J. Nonlinear Mech. 37, 89–99 (2002)CrossRefMATHGoogle Scholar
  13. 13.
    Seyranian, A.P.: The swing: parametric resonance. J. Appl. Math. Mech. 68, 757–764 (2004)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Baker, G.L., Blackburn, J.A.: The Pendulum: A Case Study in Physics. Oxford University Press, Oxford (2005)MATHGoogle Scholar
  15. 15.
    Sanmartin, J.R., Botafumeiro, O.: Parametric pumping in the middle ages. Am. J. Phys. 52, 937–945 (1984)CrossRefGoogle Scholar
  16. 16.
    Butikov, E.I.: Parametric resonance. Comput. Sci. Eng. 1(3), 76–83 (1999). doi: 10.1109/5992.764219 CrossRefGoogle Scholar
  17. 17.
    Cattani, C., Seyranian, A.P.: The regions of instability of a system with a periodically varying moment of inertia. J. Appl. Math. Mech. 69, 810–815 (2005)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Butikov, E.I.: Parametric excitation of a linear oscillator. Eur. J. Phys. 25, 535–554 (2004)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Butikov, E.I.: Parametric resonance in a linear oscillator at square-wave modulation. Eur. J. Phys. 26, 157–174 (2005)CrossRefMATHGoogle Scholar
  20. 20.
    Landau, L.D., Lifschitz, E.M.: Mechanics. Fizmatlit, Moscow (1958) (in Russian)Google Scholar
  21. 21.
    Landau, L.D., Lifschitz, E.M.: Mechanics. Pergamon, New York (1976)MATHGoogle Scholar
  22. 22.
    Ahn, Kang-Hun, Park, Chul: Hee, Wiersig, Jan, Hong, Jongbae: Current rectification by spontaneous symmetry breaking in coupled nanomechanical shuttles. Phys. Rev. Lett. 97, 216804 (2006)CrossRefGoogle Scholar
  23. 23.
    Butikov, E.I.: Pendulum with a square-wave modulated length. Int. J. Nonlinear Mech. 55, 25–34 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations