Advertisement

Nonlinear Dynamics

, Volume 88, Issue 4, pp 2577–2587 | Cite as

Memristive oscillator based on Chua’s circuit: stability analysis and hidden dynamics

  • Ronilson Rocha
  • Jothimurugan Ruthiramoorthy
  • Thamilmaran Kathamuthu
Original Paper

Abstract

This paper presents a theoretical stability analysis of a memristive oscillator derived from Chua’s circuit in order to identify its different dynamics, which are mapped in parameter spaces. Since this oscillator can be represented as a nonlinear feedback system, its stability is analyzed using the method based on describing functions, which allows to predict fixed points, periodic orbits, hidden dynamics, routes to chaos, and unstable states. Bifurcation diagrams and attractors obtained from numerical simulations corroborate theoretical predictions, confirming the coexistence of multiple dynamics in the operation of this oscillator.

Keywords

Memristor Stability analysis Describing functions Hidden oscillations Parameter space 

Notes

Acknowledgements

R.J. is supported by the University Grants Commission, India, in the form of Research Fellowship in Science for Meritorious Students. The work of K.T. forms a part of a Department of Science and Technology, Government of India sponsored project Grant no. SB/EMEQ-077/2013. R.R. acknowledges the support of Brazilian National Counsel of Technological and Scientific Development (CNPq), Brazilian Coordination for the Improvement of Higher Level—or Education—Personnel (CAPES), and State of Minas Gerais Research Foundation (FAPEMIG). R.R. is also grateful to Rene Orlando Medrano-T. of the Federal University of São Paulo for the several insightful discussions about this work.

References

  1. 1.
    Chua, L.O.: Memristor— the missing circuit element. IEEE Trans. Circuit Theory 18, 507–519 (1971)CrossRefGoogle Scholar
  2. 2.
    Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found. Nature 453, 80–83 (2008)CrossRefGoogle Scholar
  3. 3.
    Itoh, M., Chua, L.O.: Memristor oscillators. Int. J. Bifurc. Chaos 18, 3183–3206 (2008)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Yang, J.J., Pickett, M.D., Li, X., Ohlberg, D.A.A., Stewart, D.R., Williams, R.S.: Memristive switching mechanism for metal/oxide/metal nanodevices. Nat. Nanotechnol. 3, 429–433 (2008)CrossRefGoogle Scholar
  5. 5.
    Cheng, B.B., Ping, X.J., Zhong, L.: Initial state dependent dynamical behaviors in a memristor based chaotic circuit. Chin. Phys. Lett. 27, 070504 (2010)Google Scholar
  6. 6.
    Botta, V.A., Nespoli, C., Messias, M.: Mathematical analysis of a third order memristor based Chua’s oscillator. TEMA Tend. Mat. Apl. Comput. 12, 91–99 (2011)MathSciNetMATHGoogle Scholar
  7. 7.
    Slipko, V.A., Pershin, Y.V., Di Ventra, M.: Changing the state of a memristive system with white noise. Phys. Rev. E 87, 042103 (2013)CrossRefGoogle Scholar
  8. 8.
    Teng, L., Iu, H.H.C., Wang, X., Wang, X.: Chaotic behaviour in fractional-order memristor-based simplest chaotic circuit using fourth degree polynomial. Nonlinear Dyn. 77, 231–241 (2014)CrossRefGoogle Scholar
  9. 9.
    Sabarathinam, S., Volos, C., Thamilmaran, K.: Implementation and study of the nonlinear dynamics of a memristor-based Duffing oscillator. Nonlinear Dyn. 87, 33–39 (2017)Google Scholar
  10. 10.
    Zakhidov, A.A., Jung, J.D.S.B., Abruña, H.D., Malliaras, G.G.: A light-emitting memristor. Org. Electron. 11, 150–153 (2010)CrossRefGoogle Scholar
  11. 11.
    Martinsen, Ø. G., Grimnes, S., Lütken, C. A., Johnsen, G. K.: Memristance in human skin. J. Phys.: Conference Series, 224, 012071 (2010)Google Scholar
  12. 12.
    Valov, I., Linn, E., Tappertzhofen, S., Schmelzer, S., van den Hurk, J., Lentz, F., Waser, R.: Nanobatteries in redox-based resistive switches require extension of memristor theory. Nat. Commun. 4, 1771 (2013)CrossRefGoogle Scholar
  13. 13.
    Thomas, A.: Memristor-based neural networks. J. Phys. D Appl. Phys. 46, 093001 (2013)CrossRefGoogle Scholar
  14. 14.
    Muthuswamy, B.: Implementing memristor based chaotic circuits. Int. J. Bifurc. Chaos 20, 1335–1350 (2010)CrossRefMATHGoogle Scholar
  15. 15.
    Bao, B.-C., Xu, Q., Bao, H., Chen, M.: Extreme multistability in a memristive circuit. Electron. Lett. 52, 1008–1010 (2016)CrossRefGoogle Scholar
  16. 16.
    Chen, M., Li, M., Yu, Q., Bao, B., Xu, Q., Wang, J.: Dynamics of self-excited attractors and hidden attractors in generalized memristor-based Chua’s circuit. Nonlinear Dyn. 81, 215–226 (2015)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Xu, Q., Lin, Y., Bao, B., Chen, M.: Multiple attractors in a non-ideal active voltage-controlled memristor based Chua’s circuit. Chaos Sol. Fractals 83, 186–200 (2016)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Bao, B., Jiang, T., Xu, Q., Chen, M., Wu, H., Hu, Y.: Coexisting infinitely many attractors in active band-pass filter-based memristive circuit. Nonlinear Dyn. 86, 1711–1723 (2016)CrossRefGoogle Scholar
  19. 19.
    Bao, B., Li, Q., Wang, N., Xu, Q.: Multistability in Chua’s circuit with two stable node-foci. Chaos 26, 043111 (2016)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Patel, M., Patel, U., Sen, A., Sethia, G., Hens, C., Dana, S., Feudel, U., Showalter, K., Ngonghala, C., Amritkar, R.: Experimental observation of extreme multistability in an electronic system of two coupled Rössler oscillators. Phys. Rev. E 89, 022918 (2014)CrossRefGoogle Scholar
  21. 21.
    Hens, C., Dana, S., Feudel, U.: Extreme multistability: attractors manipulation and robustness. Chaos 25, 053112 (2015)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Pisarchik, A., Feudel, U.: Control of multistability. Phys. Rep. 540, 167–218 (2014)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Kuznetzov, N.: Hidden attractors in fundamental problems and engineering models: A short survey. In: Duy, V., Dao, T., Zelinka, I., Choi, H.-S., Chadli, M. (eds.) AETA 2015: Recent Advances in Electrical Engineering and Related Sciences, pp. 13–25. Springer, Berlin (2016)CrossRefGoogle Scholar
  24. 24.
    Sharma, P., Shrimali, M., Prasad, A., Kuznetsov, N., Leonov, G.: Control of multistability in hidden attractors. Eur. Phys. J. Spec. Top. 224, 1485–1491 (2015)CrossRefGoogle Scholar
  25. 25.
    Leonov, G.A., Kuznetsov, N.V., Vagaitsev, V.I.: Hidden attractor in smooth Chua systems. Phys. D Nonlinear Phenom. 241, 1482–1486 (2012)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Leonov, G.A., Kuznetsov, N.V.: Hidden attractors in dynamical systems. From hidden oscillations in Hilbert-Kolmogorov, Aizerman, and Kalman problems to hidden chaotic attractor in Chua circuits. Int. J. Bifurc. Chaos 23, 1330002 (2013)Google Scholar
  27. 27.
    Rocha, R., Medrano-T, R.O.: Stability analysis and mapping of multiple dynamics of the Chua’s circuit in full four-parameter spaces. Int. J. Bifurc. Chaos 25, 1530037 (2015)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Slotine, J .J .E., Li, W.: Applied Nonlinear Control. Prentice-Hall Inc, Englewood Cliffs (1991)MATHGoogle Scholar
  29. 29.
    Botta, V.: Stability analysis of the fourth-order cubic memristor oscillator. In: Proceeding Series of the Brazilian Society of Applied and Computational Mathematics (2013)Google Scholar
  30. 30.
    Fu, S.-H., Lu, Q.-S.: Set stability of controlled Chua’s circuit under a non-smooth controller with the absolute value. Int. J. Control Autom. Syst. 12, 507–517 (2014)CrossRefGoogle Scholar
  31. 31.
    Hackl, K., Yang, C.Y., Cheng, A.H.-D.: Stability, bifurcation and chaos of non-linear structures with control-I. Autonomous case. Int. J. Nonlinear Mech. 28, 441–454 (1993)CrossRefMATHGoogle Scholar
  32. 32.
    Spelsberg-Korspeter, G., Heffel, E., Wagner, A., Hagedorn, P., Sampaio, R.: Construction of Lyapunov functions for the estimation of basins of attraction. J. Braz. Soc. Mech. Sci. Eng. 34, 633–639 (2012)Google Scholar
  33. 33.
    Ogata, K.: Modern Control Engineering. Prentice-Hall Inc, Englewood Cliffs (1970)MATHGoogle Scholar
  34. 34.
    Khalil, H .K.: Nonlinear Systems. Prentice-Hall Inc, Englewood Cliffs (1996)Google Scholar
  35. 35.
    Glad, T., Ljung, L.: Control Theory-Multivariable and Nonlinear Methods. Taylor & Francis, London (2000)Google Scholar
  36. 36.
    Genesio, R., Tesi, A.: Chaos prediction in nonlinear feedback systems. IEE Proc. Contr. Theor. Appl. 138(4), 313–320 (1991)CrossRefMATHGoogle Scholar
  37. 37.
    Bragin, V., Vagaitsev, V., Kuznetsov, N., Leonov, G.: Algorithms for finding hidden oscillations in nonlinear systems. The Aizerman and Kalman conjectures and Chua’s circuits. J. Comput. Syst. Sci. Int. 50(4), 511–543 (2011)MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    Rocha, R., Medrano-T, R.: Finding hidden oscillations in the operation of nonlinear electronic circuits. Electron. Lett. 52, 1010–1011 (2016)CrossRefGoogle Scholar
  39. 39.
    Neymeyr, K., Seelig, F.: Determination of unstable limit cycles in chaotic systems by method of unrestricted harmonic balance. Z. Naturforsch. A 46, 499–502 (1991)CrossRefMATHGoogle Scholar
  40. 40.
    Genesio, R., Tesi, A.: Harmonic balance methods for the analysis of chaotic dynamics in nonlinear systems. Automatica 28, 531–548 (1992)CrossRefMATHGoogle Scholar
  41. 41.
    Savacı, F., Günel, S.: Harmonic balance analysis of the generalized Chua’s circuit. Int. J. Bifurc. Chaos 16, 2325–2332 (2006)MathSciNetCrossRefMATHGoogle Scholar
  42. 42.
    Luo, A.C.J.: On analytical routes to chaos in nonlinear systems. Int. J. Bifurc. Chaos 24, 1430013 (2014)MathSciNetCrossRefMATHGoogle Scholar
  43. 43.
    Genesio, R., Tesi, A.: A harmonic balance approach for chaos prediction: Chua’s circuit. Int. J. Bifurcation Chaos 02, 61–79 (1992)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Ronilson Rocha
    • 1
  • Jothimurugan Ruthiramoorthy
    • 2
  • Thamilmaran Kathamuthu
    • 2
  1. 1.Federal University of Ouro Preto - UFOP/EM/DECATOuro PrêtoBrazil
  2. 2.Centre for Nonlinear Dynamics, School of PhysicsBharathidasan UniversityTiruchirappalliIndia

Personalised recommendations