Nonlinear Dynamics

, Volume 88, Issue 4, pp 2417–2426 | Cite as

Discrete breathers and modulational instability in a discrete \(\varvec{\phi ^{4}}\) nonlinear lattice with next-nearest-neighbor couplings

Original Paper

Abstract

The properties of discrete breathers and modulational instability in a discrete \(\phi ^{4}\) nonlinear lattice which includes the next-nearest-neighbor coupling interaction are investigated analytically. By using the method of multiple scales combined with a quasi-discreteness approximation, we get a dark-type and a bright-type discrete breather solutions and analyze the existence conditions for such discrete breathers. It is found that the introduction of the next-nearest-neighbor coupling interactions will influence the existence condition for the bright discrete breather. Considering that the existence of bright discrete breather solutions is intimately linked to the modulational instability of plane waves, we will analytically study the regions of discrete modulational instability of plane carrier waves. It is shown that the shape of the region of modulational instability changes significantly when the strength of the next-nearest-neighbor coupling is sufficiently large. In addition, we calculate the instability growth rates of the \(q=\pi \) plane wave for different values of the strength of the next-nearest-neighbor coupling in order to better understand the appearance of the bright discrete breather.

Keywords

Discrete breathers Modulational instability Nonlinear lattices Next-nearest-neighbor couplings 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11604121 and 11464012) and the Scientific Research Fund of Hunan Provincial Education Department under Grant No. 16B210.

References

  1. 1.
    Wang, L., Zhang, J.-H., Wang, Z.-Q., Liu, C., Li, M., Qi, F.-H., Guo, R.: Breather-to-soliton transitions, nonlinear wave interactions, and modulational instability in a higher-order generalized nonlinear Schrödinger equation. Phys. Rev. E 93, 012214 (2016)CrossRefGoogle Scholar
  2. 2.
    Wang, L., Zhang, J.-H., Liu, C., Li, M., Qi, F.-H.: Breather transition dynamics, Peregrine combs and walls, and modulation instability in a variable-coefficient nonlinear Schrödinger equation with higher-order effects. Phys. Rev. E 93, 062217 (2016)CrossRefGoogle Scholar
  3. 3.
    Wang, L., Li, X., Qi, F.-H., Zhang, L.-L.: Breather interactions and higher-order nonautonomous rogue waves for the inhomogeneous nonlinear Schrödinger Maxwell-Bloch equations. Ann. Phys. 359, 97 (2015)CrossRefMATHGoogle Scholar
  4. 4.
    Wang, P., Liu, W.-J., Huang, L.-G.: Higher-order-effects management of soliton interactions in the Hirota equation. Phys. Rev. E 91, 033201 (2015)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Liu, W.-J., Pang, L., Han, H., Tian, W., Chen, H., Lei, M., Yan, P., Wei, Z.: Generation of dark solitons in erbium-doped fiber lasers based \(\text{ Sb }_{2}\text{ Te }_{3}\) saturable absorbers. Opt. Exp. 23, 247774 (2015)Google Scholar
  6. 6.
    Liu, W., Huang, L., Huang, P., Li, Y., Lei, M.: Dark soliton control in inhomogeneous optical fibers. Appl. Math. Lett. 61, 80 (2016)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Joseph, A., Senthilnathan, K., Porsezian, K., Dinda, P.T.: Gap solitons and modulational instability in a dynamic Bragg grating with nonlinearity management. J. Opt. A Pure Appl. Opt. 11, 015203 (2009)CrossRefGoogle Scholar
  8. 8.
    Porsezian, K., Murali, R., Malomed, B.A., Ganapathy, R.: Modulational instability in linearly coupled complex cubic-quintic Ginzburg-Landau equations. Chaos Solitons Fractals 40, 1907 (2009)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Murali, R., Porsezian, K.: Modulation instability and moving gap solitons in Bose Einstein condensation with feshbach resonance management. Physica D 239, 1 (2010)CrossRefMATHGoogle Scholar
  10. 10.
    Joseph, A., Porsezian, K.: Stability criterion for Gaussian pulse propagation through negative index materials. Phys. Rev. A 81, 023805 (2010)CrossRefGoogle Scholar
  11. 11.
    Flach, S., Gorbach, A.V.: Discrete breathers—advances in theory and applications. Phys. Rep. 467, 1 (2008)CrossRefMATHGoogle Scholar
  12. 12.
    Tabi, C.B., Mohamadou, A., Kofane, T.C.: Modulational instability in the anharmonic Peyrard-Bishop model of DNA. Eur. Phys. J. B 74, 151 (2010)CrossRefGoogle Scholar
  13. 13.
    Sievers, A.J., Takeno, S.: Intrinsic localized modes in anharmonic crystals. Phys. Rev. Lett. 61, 970 (1988)CrossRefGoogle Scholar
  14. 14.
    Johansson, M., Aubry, S.: Growth and decay of discrete nonlinear Schrodinger breathers interacting with internal modes or standing-wave phonons. Phys. Rev. E 61, 5864 (2000)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Rakhmanova, S.V., Shchegrov, A.V.: Intrinsic localized modes of bright and dark types in ferromagnetic Heisenberg chains. Phys. Rev. B 57, R14012 (1998)CrossRefGoogle Scholar
  16. 16.
    Doi, Y.: Sensitive behaviors of intrinsic localized modes in the presence of impurity and random inhomogeneity. Wave Motion 38, 177 (2003)CrossRefMATHGoogle Scholar
  17. 17.
    Kivshar, Y.S., Peyrard, M.: Modulational instabilities in discrete lattices. Phys. Rev. A 46, 3198 (1992)CrossRefGoogle Scholar
  18. 18.
    Kivshar, Y.S.: Localized modes in a chain with nonlinear on-site potential. Phys. Lett. A 173, 172 (1993)Google Scholar
  19. 19.
    Daumonty, I., Dauxoisz, T., Peyrard, M.: Modulational instability: first step towards energy localization in nonlinear lattices. Nonlinearity 10, 617 (1997)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Yoshimura, K.: Modulational instability of zone boundary mode in nonlinear lattices: rigorous results. Phys. Rev. E 70, 016611 (2004)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Dauxois, T., Khomeriki, R., Ruffo, S.: Modulational instability in isolated and driven Fermi–Pasta–Ulam lattices. Eur. Phys. J. Special Top. 147, 3 (2007)CrossRefGoogle Scholar
  22. 22.
    Sarkar, R., Dey, B.: Dynamics of a curved Fermi–Pasta–Ulam chain: effects of geometry, long-range interaction, and nonlinear dispersion. Phys. Rev. E 76, 016605 (2007)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Sarkar, R., Dey, B.: Energy localization and transport in two-dimensional Fermi–Pasta–Ulam lattices. Eur. Phys. J. Special Top. 147, 73 (2007)CrossRefGoogle Scholar
  24. 24.
    Huang, G., Shi, Z.-P., Xu, Z.: Asymmetric intrinsic localized modes in a homogeneous lattice with cubic and quartic anharmonicity. Phys. Rev. B 47, 14561 (1993)CrossRefGoogle Scholar
  25. 25.
    Huang, G., Velarde, M.G., Zhu, S.: Asymmetric gap soliton modes in diatomic lattices with cubic and quartic nonlinearity. Phys. Rev. B 55, 336 (1997)CrossRefGoogle Scholar
  26. 26.
    Kosevich, A.M.: Some properties of dynamic solitons of nonlinear systems that are determined by the linearized equation. Low Temp. Phys. 26, 453 (2000)CrossRefGoogle Scholar
  27. 27.
    Kosevich, A.M., Savotchenko, S.E.: Peculiarities of dynamics of one-dimensional discrete systems with interaction extending beyond nearest neighbors, and the role of higher dispersion in soliton dynamics. Low Temp. Phys. 25, 550 (1999)CrossRefGoogle Scholar
  28. 28.
    Wattis, J.A.D.: Approximations to solitary waves on lattices, III: the monatomic lattice with second-neighbour interactions. J. Phys. A Math. Gen. 29, 8139 (1996)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Tsurui, A.: Wave modulations in anharmonic lattices. Prog. Theor. Phys. 48, 1196 (1972)CrossRefGoogle Scholar
  30. 30.
    Remoissenet, M.: Waves called solitons. Concepts and experiments, 2nd edn. Springer, Berlin (1996)CrossRefMATHGoogle Scholar
  31. 31.
    Yoshimura, K., watanabe, S.: Envelope soliton as an intrinsic localized mode in a one-dimensional nonlinear lattice. J. Phys. Soc. Jpn. 60, 82 (1991)CrossRefGoogle Scholar
  32. 32.
    Kivshar, YuS: Intrinsic localized modes as solitons with a compact support. Phys. Rev. E 48, R43 (1993)CrossRefGoogle Scholar
  33. 33.
    Sandusky, K.W., Page, J.B., Schmidt, K.E.: Stability and motion of intrinsic localized modes in nonlinear periodic lattices. Phys. Rev. B 46, 6161 (1992)CrossRefGoogle Scholar
  34. 34.
    Abdullaev, FKh, Bouketir, A., Messikh, A., Umarov, B.A.: Modulational instability and discrete breathers in the discrete cubic-quintic nonlinear Schrödinger equation. Physcia D 232, 54 (2007)CrossRefMATHGoogle Scholar
  35. 35.
    Kivshar, Y.S., Salerno, M.: Modulational instabilities in the discrete deformable nonlinear Schrödinger equation. Phys. Rev. E 49, 3543 (1994)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.College of Physics, Mechanical and Electrical EngineeringJishou UniversityJishouChina

Personalised recommendations