Nonlinear Dynamics

, Volume 88, Issue 4, pp 2391–2401 | Cite as

Application of Radau IIA algorithms to flexible multibody system with holonomic constraints

Original Paper

Abstract

The paper designs new 2- and 3-stage Radau IIA algorithms to integrate the dynamic responses of flexible multibody system with holonomic constraints. The total translation, the incremental rotation and associated velocities are selected as unknowns to avoid the linearization of angular acceleration which makes it possible to parameterize the finite rotation by using the Wiener–Milenković parameters. The new algorithms release the heavy computational burden through the simplified Newton iterations and are stabilized by the preferable h-scaling technique. Contributions of the paper include: (1) For 2-stage algorithm, the resulting block triangular equations are solved efficiently by an inner iteration scheme. (2) For 3-stage algorithm, the full-size linear system is decoupled into a real and a complex subsystems which reduces the size of the system dramatically. (3) A new scheme is designed to predict the truncation error from the associated deferred correction equations without overestimation. Finally, numerical simulations show the 2- and 3-stage Radau IIA algorithms have excellent stability and convergence properties and behavior in a computationally efficient manner.

Keywords

Radau IIA Multibody dynamics DAE of index 3 Finite rotation 

Notes

Acknowledgements

The paper is under the supports of both “2011 China overseas personnel science and technology activities supporting project” and “2011 Beijing overseas personnel science and technology activities supporting project”.

References

  1. 1.
    Cash, J.: Review paper. Efficient numerical methods for the solution of stiff initial-value problems and differential algebraic equations. Proc. Math. Phys. Eng. Sci. 459(2032), 797–815 (2003). doi: 10.1098/rspa.2003.1130 MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Wang, J., Rodriguez, H., Keribar, R.: Integration of flexible multibody systems using Radau IIA algorithms. J. Comput. Nonlinear Dyn. 5(4), 041,008.1–041,008.14 (2010). doi: 10.1115/1.4001907 CrossRefGoogle Scholar
  3. 3.
    Cardona, A., Gerardin, M.: Time integration of the equations of motion in mechanism analysis. Comput. Struct. 33(3), 801–820 (1989)CrossRefMATHGoogle Scholar
  4. 4.
    Bauchau, O., Laulusa, A.: Review of contemporary approaches for constraint enforcement in multibody systems. J. Comput. Nonlinear Dyn. 3(1), 011005-1–011005-8 (2008). doi: 10.1115/1.4001907 Google Scholar
  5. 5.
    Baumgarte, J.: Stabilization of constraints and integrals of motion in dynamic systems. Comput. Methods Appl. Mech. Eng. 1(1), 1–16 (1972)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Schaub, M., Simeon, B.: Automatic \(h\)-scaling for the efficient time integration of stiff mechanical systems. Multibody Sys. Dyn. 8(3), 327–343 (2002). doi: 10.1023/A:1020973630828 MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems. Springer, New York (1996)CrossRefMATHGoogle Scholar
  8. 8.
    Shampine, L., Reichelt, M.: The MATLAB ODE suite. SIAM J. Sci. Comput. 18(1), 1–22 (1997). doi: 10.1115/1.4001907 MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Hairer, E., Wanner, G.: Stiff differential equations solved by Radau methods. J. Comput. Appl. Math. 111(1), 93–111 (1999). doi: 10.1016/S0377-0427(99)00134-X MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Brown, P.N., Hinmarsh, A.C., Petzold, L.R.: Using Krylov methods in the solution of large-scale differential-algebraic systems. SIAM J. Sci. Comput. 15(6), 1467–1488 (1994). doi: 10.1137/0915088 MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Zhao, Z., Ren, G.: A quaternion-based formulation of Euler–Bernoulli beam without singularity. J. Nonlinear Dyn. 67(3), 1825–1835 (2012). doi: 10.1007/s11071-011-0109-0 MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Bauchau, O.: Flexible Multibody Dynamics. Springer, Dordrecht (2011)CrossRefMATHGoogle Scholar
  13. 13.
    Bauchau, O.: Computational schemes for flexible, nonlinear multi-body systems. Multibody Sys. Dyn. 2(2), 169–225 (1998). doi: 10.1023/A:1009710818135 CrossRefMATHGoogle Scholar
  14. 14.
    Brüls, O.: Integrated simulation and reduced-order modeling of controlled flexible multibody systems. PhD Thesis, Université de Liége, Liége, Belgium (2005). http://orbi.ulg.ac.be/handle/2268/27097
  15. 15.
    Epple, A.: Methods for increased computational efficiency of multibody simulations. PhD Thesis, Georgia Institute of Technology, School of Aerospace Engineering, Georiga, U.S. (2008). http://www.gatech.edu
  16. 16.
    Shampine, L.F.: Error estimation and control for ODEs. J. Sci. Comput. 25(1/2), 3–16 (2005). doi: 10.1007/s10915-004-4629-3 MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Wang, J.: Implementation of geometrically exact beam element for nonlinear dynamics modeling. Multibody Sys. Dyn. 35(4), 377–392 (2015). doi: 10.1007/s11044-015-9457-8 MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Wang, J., Li, Z.: Implementation of HHT algorithm for numerical integration of multibody dynamics with holonomic constraints. J. Nonlinear Dyn. 80(1–2), 817–825 (2015). doi: 10.1007/s11071-015-1908-5 MathSciNetCrossRefGoogle Scholar
  19. 19.
    Bauchau, O., Ju, C.: Modeling friction phenomena in flexible multibody dynamics. Comput. Methods Appl. Mech. Eng. 195(50–51), 6909–6924 (2006). doi: 10.1016/j.cma.2005.08.013 CrossRefMATHGoogle Scholar
  20. 20.
    Bauchau, O., Wang, J.: Efficient and robust approaches to the stability analysis of large multibody systems. J. Comput. Nonlinear Dyn. 3(1), 011,001–12 (2008). doi: 10.1115/1.2397690 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Beijing Aeronautical Science and Technology Research InstituteCommercial Aircraft Corporation of China, Ltd.BeijingPeople’s Republic of China

Personalised recommendations