Skip to main content
Log in

Hovering control for quadrotor aircraft based on finite-time control algorithm

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, a finite-time controller is proposed for the quadrotor aircraft to achieve hovering control in a finite time. The design of controller is mainly divided into two steps. Firstly, a saturated finite-time position controller is designed such that the position of quadrotor aircraft can reach any desired position in a finite time. Secondly, a finite-time attitude tracking controller is designed, which can guarantee that the attitude of quadrotor aircraft converges to the desired attitude in a finite time. By homogenous system theory and Lyapunov theory, the finite-time stability of the closed-loop systems is given through rigorous mathematical proofs. Finally, numerical simulations are given to show that the proposed algorithm has a faster convergence performance and a stronger disturbance rejection performance by comparing to the PD control algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zhao, B., Xian, B., Zhang, Y., Zhang, X.: Nonlinear robust adaptive tracking control of a quadrotor UAV via immersion and invariance methodology. IEEE Trans. Ind. Electron. 62(5), 2891–2902 (2015)

    Article  Google Scholar 

  2. Liu, M., Egan, G.K., Santoso, F.: Modeling, autopilot design, and field tuning of a UAV with minimum control surfaces. IEEE Trans. Control Syst. Technol. 23(6), 2353–2360 (2015)

    Article  Google Scholar 

  3. Lim, H., Park, J., Lee, D., Kim, H.J.: Build your own quadrotor: open-source projects on unmanned aerial vehicles. IEEE Robot. Autom. Mag. 19(3), 33–45 (2012)

    Article  Google Scholar 

  4. Hamel, T., Mahony, R., Lozano, R., Ostrowski, J.: Dynamic modelling and configuration stabilization for an X4 Flyer. IFAC Trienn. World Congr. 35(1), 217–222 (2002)

    Google Scholar 

  5. Yin, C., Cheng, Y., Zhong, S.: Fractional-order sliding mode based extremum seeking control of a class of nonlinear systems. Automatica 50(12), 3173–3181 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Yin, C., Starkb, B., Chen, Y., Zhong, S., Lau, E.: Fractional-order adaptive minimum energy cognitive lighting control strategy for the hybrid lighting system. Energy Build. 87, 176–184 (2015)

    Article  Google Scholar 

  7. Yin, C., Cheng, Y., Chen, Y., Stark, B., Zhong, S.: Adaptive fractional-order switching-type control method design for 3D fractional-order nonlinear systems. Nonlinear Dyn. 82(1), 39–52 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Xiong, J., Zheng, E.: Position and attitude tracking control for a quadrotor UAV. ISA Trans. 53(3), 725–731 (2014)

    Article  MathSciNet  Google Scholar 

  9. Khalil, H.K.: Nonlinear System, 3rd edn. Prentice hall, Upper Saddle River (2002). 303–334

    Google Scholar 

  10. Xu, R., Ozguner, U.: Sliding mode control of a class of underactuated systems. Automatica 44(1), 233–241 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Zuo, Z., Ru, P.: Augmented L1 adaptive tracking control of quad-Rotor unmanned aircrafts. IEEE Trans. Aerosp. Electron. Syst. 50(4), 3090–3100 (2014)

    Article  Google Scholar 

  12. Liu, H., Li, D.J., Zuo, Z.Y., Zhong, Y.S.: Robust three-loop trajectory tracking control for quadrotors with multiple uncertainties. IEEE Trans. Ind. Electron. 63(4), 2263–2273 (2016)

    Google Scholar 

  13. Yu, Y., Li, B., Hu, Q.: Quaternion-based output feedback attitude control for rigid spacecraft with bounded input constraint. In: The 34th Chinese Control Conference, pp. 489–493 (2015)

  14. Guerrero-Castellanos, J.F., Marchand, N., Hably, A., Lesecq, S., Delamare, J.: Attitude control of rigid bodies: real-time experimentation to a quadrotor mini-helicopter. Control Eng. Pract. 19(8), 790–797 (2011)

    Article  Google Scholar 

  15. Liu, H., Wang, X., Zhong, Y.: Quaternion-based robust attitude control for uncertain robotic quadrotors. IEEE Trans. Ind. Inform. 11(2), 406–415 (2015)

    Article  Google Scholar 

  16. Bhat, S., Bernstein, D.: Finite-time stability of homogeneous systems. Am. Control Conf. 4(4), 2513–2514 (1997)

    Google Scholar 

  17. Shen, Y., Huang, Y., Gu, J.: Global finite-time observers for Lipschitz nonlinear systems. IEEE Trans. Autom. Control 56(2), 418–424 (2011)

    Article  MathSciNet  Google Scholar 

  18. Shen, Y., Huang, Y.: Uniformly observable and globally Lipschitzian nonlinear systems admit global finite-time observers. IEEE Trans. Autom. Control 54(11), 2621–2625 (2009)

    Article  MathSciNet  Google Scholar 

  19. Shen, Y., Xia, X.: Semi global finite time observers for nonlinear systems. Automatica 44(12), 3152–3156 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Bhat, S.P., Bernstein, D.S.: Finite-time stability of continuous autonomous systems. SIAM J. Control Optim. 38(3), 751–766 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  21. Li, S., Du, H., Lin, X.: Finite-time consensus algorithm for multi-agent systems with double-integrator dynamics. Automatica 47(8), 1706–1712 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Li, S., Liu, H., Ding, S.: A speed control for a PMSM using finite-time feedback control and disturbance compensation. Trans. Inst. Meas. Control 32(2), 170–187 (2010)

    Article  Google Scholar 

  23. Li, S., Zhou, M., Yu, X.: Design and implementation of terminal sliding mode control method for PMSM speed regulation system. IEEE Trans. Ind. Inform. 9(4), 1879–1891 (2013)

    Article  Google Scholar 

  24. Yang, X., Wu, Z., Cao, J.: Finite-time synchronization of complex networks with nonidentical discontinuous nodes. Nonlinear Dyn. 73(4), 2313–2327 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Sun, H., Li, S., Sun, C.: Finite time integral sliding mode control of hypersonic vehicles. Nonlinear Dyn. 73(1–2), 229–244 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Frye, M.T., Ding, S., Qian, C., Li, S.: Fast convergent observer design for output feedback stabilisation of a planar vertical takeoff and landing aircraft. IET Control Theory Appl. 4(4), 690–700 (2010)

    Article  MathSciNet  Google Scholar 

  27. Zavala-Rio, A., Fantoni, I., Sanahuja, G.: Finite-time observer-based output-feedback control for the global stabilisation of the PVTOL aircraft with bounded inputs. Int. J. Syst. Sci. 47(7), 1543–1562 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  28. Zhang, C., Li, S., Ding, S.: Finite-time output feedback stabilization and control for a quadrotor mini-aircraft. Kybernetika 48(2), 206–222 (2012)

    MathSciNet  MATH  Google Scholar 

  29. Abdelhamid, T., Stephen, M.: Attitude stabilization of a VTOL quadrotor aircraft. IEEE Trans. Control Syst. Technol. 14(3), 562–571 (2006)

    Article  Google Scholar 

  30. Shuster, M.D.: A survey of attitude representations. J. Astronaut. Sci. 41(4), 439–517 (1993)

    MathSciNet  Google Scholar 

  31. Hughes, P.: Spacecraft Attitude Dynamics. Wiley, Hoboken (1986)

    Google Scholar 

  32. Xia, Y., Zhu, Z., Fu, M., Wang, S.: Attitude tracking of rigid spacecraft with bounded disturbances. IEEE Trans. Ind. Electron. 58(2), 647–659 (2011)

    Article  Google Scholar 

  33. Islam, S., Liu, P., Saddik, A.E.: Robust control of four-rotor unmanned aerial vehicle with disturbance uncertainty. IEEE Trans. Ind. Electron. 62(3), 1563–1571 (2015)

    Article  Google Scholar 

  34. Liu, H., Xi, J., Zhong, Y.: Robust motion control of quadrotors. J. Frankl. Inst. 351(12), 5494–5510 (2014)

    Article  MathSciNet  Google Scholar 

  35. Qian, C., Lin, W.: A continuous feedback approach to global strong stabilization of nonlinear systems. IEEE Trans. Autom. Control 46(7), 1061–1079 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  36. Hardy, G.H., Littlewood, J.E., Polya, G.: Inequalities. Cambridge University Press, Cambridge (1952)

    MATH  Google Scholar 

  37. Liao, W., Zong, Q., Ma, Y.: Moedling and finite-time control for quadrotor mini unmanned aerial vehicles. J. Control Theory Appl. 32(10), 1343–1350 (2015)

    MATH  Google Scholar 

  38. Li, S., Ding, S., Tian, Y.: A finite-time state feedback stabilization method for a class of second order nonlinear systems. Acta Autom. Sin. 33(1), 101–104 (2007)

    Article  MathSciNet  Google Scholar 

  39. Zavala-Rio, A., Fantoni, I.: Global finite-time stability characterized through a local notion of homogeneity. IEEE Trans. Autom. Control 59(2), 471–477 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  40. Hong, Y., Xu, Y., Huang, J.: Finite-time control for robot manipulators. Syst. Control Lett. 46(4), 185–200 (2002)

    MathSciNet  MATH  Google Scholar 

  41. Bhat, S.P., Bernstein, D.S.: A topological obstruction to continuous global stabilizationof rotational motion and the unwinding phenomenon. Syst. Control Lett. 39(1), 63–70 (2000)

    Article  MATH  Google Scholar 

  42. Jin, E., Sun, Z.: Robust controllers design with finite time convergence for rigid spacecraft attitude tracking control. Aerosp. Sci. Technol. 12(4), 324–330 (2008)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (61673153,61304007,) the Scientific Research and Development Funds of Hefei University of Technology (JZ2016HGXJ0023), and the Fundamental Research Funds for the Central Universities (JZ2016HGTA0700).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haibo Du.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, W., Du, H., Cheng, Y. et al. Hovering control for quadrotor aircraft based on finite-time control algorithm. Nonlinear Dyn 88, 2359–2369 (2017). https://doi.org/10.1007/s11071-017-3382-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3382-8

Keywords

Navigation