Nonlinear Dynamics

, Volume 88, Issue 4, pp 2359–2369 | Cite as

Hovering control for quadrotor aircraft based on finite-time control algorithm

Original Paper


In this paper, a finite-time controller is proposed for the quadrotor aircraft to achieve hovering control in a finite time. The design of controller is mainly divided into two steps. Firstly, a saturated finite-time position controller is designed such that the position of quadrotor aircraft can reach any desired position in a finite time. Secondly, a finite-time attitude tracking controller is designed, which can guarantee that the attitude of quadrotor aircraft converges to the desired attitude in a finite time. By homogenous system theory and Lyapunov theory, the finite-time stability of the closed-loop systems is given through rigorous mathematical proofs. Finally, numerical simulations are given to show that the proposed algorithm has a faster convergence performance and a stronger disturbance rejection performance by comparing to the PD control algorithm.


Quadrotor aircraft Finite-time control algorithm Hovering control 



This work was supported by National Natural Science Foundation of China (61673153,61304007,) the Scientific Research and Development Funds of Hefei University of Technology (JZ2016HGXJ0023), and the Fundamental Research Funds for the Central Universities (JZ2016HGTA0700).


  1. 1.
    Zhao, B., Xian, B., Zhang, Y., Zhang, X.: Nonlinear robust adaptive tracking control of a quadrotor UAV via immersion and invariance methodology. IEEE Trans. Ind. Electron. 62(5), 2891–2902 (2015)CrossRefGoogle Scholar
  2. 2.
    Liu, M., Egan, G.K., Santoso, F.: Modeling, autopilot design, and field tuning of a UAV with minimum control surfaces. IEEE Trans. Control Syst. Technol. 23(6), 2353–2360 (2015)CrossRefGoogle Scholar
  3. 3.
    Lim, H., Park, J., Lee, D., Kim, H.J.: Build your own quadrotor: open-source projects on unmanned aerial vehicles. IEEE Robot. Autom. Mag. 19(3), 33–45 (2012)CrossRefGoogle Scholar
  4. 4.
    Hamel, T., Mahony, R., Lozano, R., Ostrowski, J.: Dynamic modelling and configuration stabilization for an X4 Flyer. IFAC Trienn. World Congr. 35(1), 217–222 (2002)Google Scholar
  5. 5.
    Yin, C., Cheng, Y., Zhong, S.: Fractional-order sliding mode based extremum seeking control of a class of nonlinear systems. Automatica 50(12), 3173–3181 (2014)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Yin, C., Starkb, B., Chen, Y., Zhong, S., Lau, E.: Fractional-order adaptive minimum energy cognitive lighting control strategy for the hybrid lighting system. Energy Build. 87, 176–184 (2015)CrossRefGoogle Scholar
  7. 7.
    Yin, C., Cheng, Y., Chen, Y., Stark, B., Zhong, S.: Adaptive fractional-order switching-type control method design for 3D fractional-order nonlinear systems. Nonlinear Dyn. 82(1), 39–52 (2015)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Xiong, J., Zheng, E.: Position and attitude tracking control for a quadrotor UAV. ISA Trans. 53(3), 725–731 (2014)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Khalil, H.K.: Nonlinear System, 3rd edn. Prentice hall, Upper Saddle River (2002). 303–334Google Scholar
  10. 10.
    Xu, R., Ozguner, U.: Sliding mode control of a class of underactuated systems. Automatica 44(1), 233–241 (2008)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Zuo, Z., Ru, P.: Augmented L1 adaptive tracking control of quad-Rotor unmanned aircrafts. IEEE Trans. Aerosp. Electron. Syst. 50(4), 3090–3100 (2014)CrossRefGoogle Scholar
  12. 12.
    Liu, H., Li, D.J., Zuo, Z.Y., Zhong, Y.S.: Robust three-loop trajectory tracking control for quadrotors with multiple uncertainties. IEEE Trans. Ind. Electron. 63(4), 2263–2273 (2016)Google Scholar
  13. 13.
    Yu, Y., Li, B., Hu, Q.: Quaternion-based output feedback attitude control for rigid spacecraft with bounded input constraint. In: The 34th Chinese Control Conference, pp. 489–493 (2015)Google Scholar
  14. 14.
    Guerrero-Castellanos, J.F., Marchand, N., Hably, A., Lesecq, S., Delamare, J.: Attitude control of rigid bodies: real-time experimentation to a quadrotor mini-helicopter. Control Eng. Pract. 19(8), 790–797 (2011)CrossRefGoogle Scholar
  15. 15.
    Liu, H., Wang, X., Zhong, Y.: Quaternion-based robust attitude control for uncertain robotic quadrotors. IEEE Trans. Ind. Inform. 11(2), 406–415 (2015)CrossRefGoogle Scholar
  16. 16.
    Bhat, S., Bernstein, D.: Finite-time stability of homogeneous systems. Am. Control Conf. 4(4), 2513–2514 (1997)Google Scholar
  17. 17.
    Shen, Y., Huang, Y., Gu, J.: Global finite-time observers for Lipschitz nonlinear systems. IEEE Trans. Autom. Control 56(2), 418–424 (2011)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Shen, Y., Huang, Y.: Uniformly observable and globally Lipschitzian nonlinear systems admit global finite-time observers. IEEE Trans. Autom. Control 54(11), 2621–2625 (2009)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Shen, Y., Xia, X.: Semi global finite time observers for nonlinear systems. Automatica 44(12), 3152–3156 (2008)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Bhat, S.P., Bernstein, D.S.: Finite-time stability of continuous autonomous systems. SIAM J. Control Optim. 38(3), 751–766 (2000)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Li, S., Du, H., Lin, X.: Finite-time consensus algorithm for multi-agent systems with double-integrator dynamics. Automatica 47(8), 1706–1712 (2011)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Li, S., Liu, H., Ding, S.: A speed control for a PMSM using finite-time feedback control and disturbance compensation. Trans. Inst. Meas. Control 32(2), 170–187 (2010)CrossRefGoogle Scholar
  23. 23.
    Li, S., Zhou, M., Yu, X.: Design and implementation of terminal sliding mode control method for PMSM speed regulation system. IEEE Trans. Ind. Inform. 9(4), 1879–1891 (2013)CrossRefGoogle Scholar
  24. 24.
    Yang, X., Wu, Z., Cao, J.: Finite-time synchronization of complex networks with nonidentical discontinuous nodes. Nonlinear Dyn. 73(4), 2313–2327 (2013)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Sun, H., Li, S., Sun, C.: Finite time integral sliding mode control of hypersonic vehicles. Nonlinear Dyn. 73(1–2), 229–244 (2013)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Frye, M.T., Ding, S., Qian, C., Li, S.: Fast convergent observer design for output feedback stabilisation of a planar vertical takeoff and landing aircraft. IET Control Theory Appl. 4(4), 690–700 (2010)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Zavala-Rio, A., Fantoni, I., Sanahuja, G.: Finite-time observer-based output-feedback control for the global stabilisation of the PVTOL aircraft with bounded inputs. Int. J. Syst. Sci. 47(7), 1543–1562 (2016)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Zhang, C., Li, S., Ding, S.: Finite-time output feedback stabilization and control for a quadrotor mini-aircraft. Kybernetika 48(2), 206–222 (2012)MathSciNetMATHGoogle Scholar
  29. 29.
    Abdelhamid, T., Stephen, M.: Attitude stabilization of a VTOL quadrotor aircraft. IEEE Trans. Control Syst. Technol. 14(3), 562–571 (2006)CrossRefGoogle Scholar
  30. 30.
    Shuster, M.D.: A survey of attitude representations. J. Astronaut. Sci. 41(4), 439–517 (1993)MathSciNetGoogle Scholar
  31. 31.
    Hughes, P.: Spacecraft Attitude Dynamics. Wiley, Hoboken (1986)Google Scholar
  32. 32.
    Xia, Y., Zhu, Z., Fu, M., Wang, S.: Attitude tracking of rigid spacecraft with bounded disturbances. IEEE Trans. Ind. Electron. 58(2), 647–659 (2011)CrossRefGoogle Scholar
  33. 33.
    Islam, S., Liu, P., Saddik, A.E.: Robust control of four-rotor unmanned aerial vehicle with disturbance uncertainty. IEEE Trans. Ind. Electron. 62(3), 1563–1571 (2015)CrossRefGoogle Scholar
  34. 34.
    Liu, H., Xi, J., Zhong, Y.: Robust motion control of quadrotors. J. Frankl. Inst. 351(12), 5494–5510 (2014)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Qian, C., Lin, W.: A continuous feedback approach to global strong stabilization of nonlinear systems. IEEE Trans. Autom. Control 46(7), 1061–1079 (2001)MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Hardy, G.H., Littlewood, J.E., Polya, G.: Inequalities. Cambridge University Press, Cambridge (1952)MATHGoogle Scholar
  37. 37.
    Liao, W., Zong, Q., Ma, Y.: Moedling and finite-time control for quadrotor mini unmanned aerial vehicles. J. Control Theory Appl. 32(10), 1343–1350 (2015)MATHGoogle Scholar
  38. 38.
    Li, S., Ding, S., Tian, Y.: A finite-time state feedback stabilization method for a class of second order nonlinear systems. Acta Autom. Sin. 33(1), 101–104 (2007)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Zavala-Rio, A., Fantoni, I.: Global finite-time stability characterized through a local notion of homogeneity. IEEE Trans. Autom. Control 59(2), 471–477 (2014)MathSciNetCrossRefMATHGoogle Scholar
  40. 40.
    Hong, Y., Xu, Y., Huang, J.: Finite-time control for robot manipulators. Syst. Control Lett. 46(4), 185–200 (2002)MathSciNetMATHGoogle Scholar
  41. 41.
    Bhat, S.P., Bernstein, D.S.: A topological obstruction to continuous global stabilizationof rotational motion and the unwinding phenomenon. Syst. Control Lett. 39(1), 63–70 (2000)CrossRefMATHGoogle Scholar
  42. 42.
    Jin, E., Sun, Z.: Robust controllers design with finite time convergence for rigid spacecraft attitude tracking control. Aerosp. Sci. Technol. 12(4), 324–330 (2008)CrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Wenwu Zhu
    • 1
  • Haibo Du
    • 1
  • Yingying Cheng
    • 1
  • Zhaobi Chu
    • 1
  1. 1.School of Electrical Engineering and AutomationHefei University of TechnologyHefeiChina

Personalised recommendations