Skip to main content

Advertisement

Log in

Nonlinear dynamic responses of functionally graded tubes subjected to moving load based on a refined beam model

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In the paper, basing on a refined beam model and considering the effects of thermal and elastic foundation, the nonlinear dynamic responses of functionally graded tubes applied to a moving load which keeps at a constant velocity are studied. This refined beam model is expanded by Laurent series expansion which can fulfill the shear stress on the inner and outer surfaces. The whole governing equations are obtained by Hamilton’s principle, and solved by Galerkin method and Newmark method. In the numerical examples, the effects of transverse shear deformation, geometric nonlinearity, functionally graded index, inner radius, temperature, elastic foundation stiffness, and velocity of moving load on the dynamic responses of FGM tubes are discussed. For present beam model, it is more suitable and convenient to analyze the nonlinear dynamic responses of FGM tubes with circular cross section subjected to a moving load, especially for exact stress analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Koizumi, M.: FGM activities in Japan. Compos. Part B Eng. 28(1), 1–4 (1997)

    Article  Google Scholar 

  2. Feldman, E., Aboudi, J.: Buckling analysis of functionally graded plates subjected to uniaxial loading. Compos. Struct. 38(1), 29–36 (1997)

    Article  Google Scholar 

  3. Ma, L.S., Wang, T.J.: Nonlinear bending and post-buckling of a functionally graded circular plate under mechanical and thermal loadings. Int. J. Solids. Struct. 40(13), 3311–3330 (2003)

    Article  MATH  Google Scholar 

  4. Şimşek, M., Yurtcu, H.H.: Analytical solutions for bending and buckling of functionally graded nanobeams based on the nonlocal Timoshenko beam theory. Compos. Struct. 97, 378–386 (2013)

    Article  Google Scholar 

  5. Fu, Y., Wang, J., Mao, Y.: Nonlinear analysis of buckling, free vibration and dynamic stability for the piezoelectric functionally graded beams in thermal environment. Appl. Math. Model. 36(9), 4324–4340 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Qian, L.F., Batra, R.C., Chen, L.M.: Static and dynamic deformations of thick functionally graded elastic plates by using higher-order shear and normal deformable plate theory and meshless local Petrov–Galerkin method. Compos. Part B Eng. 35(6), 685–697 (2004)

    Article  Google Scholar 

  7. Huang, X.L., Shen, H.S.: Nonlinear vibration and dynamic response of functionally graded plates in thermal environments. Int. J. Solids Struct. 41(9), 2403–2427 (2004)

    Article  MATH  Google Scholar 

  8. Komijani, M., Esfahani, S.E., Reddy, J.N., et al.: Nonlinear thermal stability and vibration of pre/post-buckled temperature-and microstructure-dependent functionally graded beams resting on elastic foundation. Compos. Struct. 112, 292–307 (2014)

    Article  Google Scholar 

  9. Birman, V., Byrd, L.W.: Modeling and analysis of functionally graded materials and structures. Appl. Mech. Rev. 60(5), 195–216 (2007)

    Article  Google Scholar 

  10. Steele, C.R.: The Timoshenko beam with a moving load. J. Appl. Mech. 35(3), 481–488 (1968)

    Article  MATH  Google Scholar 

  11. Weaver, J.W., Timoshenko, S.P., Young, D.H.: Vibration Problems in Engineering. Wiley, New York (1990)

    Google Scholar 

  12. Frýba, L.: Vibration of Solids and Structures Under Moving Loads. Springer, Berlin (2013)

    MATH  Google Scholar 

  13. Qian, C.Z., Tang, J.S.: A time delay control for a nonlinear dynamic beam under moving load. J. Sound Vib. 309(1), 1–8 (2008)

    Article  Google Scholar 

  14. Mamandi, A., Kargarnovin, M.H., Younesian, D.: Nonlinear dynamics of an inclined beam subjected to a moving load. Nonlinear Dyn. 60(3), 277–293 (2010)

    Article  MATH  Google Scholar 

  15. Ding, H., Shi, K.L., Chen, L.Q., et al.: Dynamic response of an infinite Timoshenko beam on a nonlinear viscoelastic foundation to a moving load. Nonlinear Dyn. 73(1–2), 285–298 (2013)

  16. Tao, C., Fu, Y.M., Dai, H.L.: Nonlinear dynamic analysis of fiber metal laminated beams subjected to moving loads in thermal environment. Compos. Struct. 140, 410–416 (2016)

    Article  Google Scholar 

  17. Şimşek, M., Kocatürk, T.: Free and forced vibration of a functionally graded beam subjected to a concentrated moving harmonic load. Compos. Struct. 90(4), 465–473 (2009)

    Article  Google Scholar 

  18. Şimşek, M., Kocatürk, T., Akbaş, Ş.D.: Dynamic behavior of an axially functionally graded beam under action of a moving harmonic load. Compos. Struct. 94(8), 2358–2364 (2012)

    Article  Google Scholar 

  19. Yas, M.H., Heshmati, M.: Dynamic analysis of functionally graded nanocomposite beams reinforced by randomly oriented carbon nanotube under the action of moving load. Appl. Math. Model. 36(4), 1371–1394 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Malekzadeh, P., Monajjemzadeh, S.M.: Dynamic response of functionally graded plates in thermal environment under moving load. Compos. Part B Eng. 45(1), 1521–1533 (2013)

    Article  Google Scholar 

  21. Şimşek, M.: Non-linear vibration analysis of a functionally graded Timoshenko beam under action of a moving harmonic load. Compos. Struct. 92(10), 2532–2546 (2010)

    Article  Google Scholar 

  22. Civalek, Ö., Demir, Ç.: Bending analysis of microtubules using nonlocal Euler–Bernoulli beam theory. Appl. Math. Model. 35(5), 2053–2067 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Murmu, T., Pradhan, S.C.: Buckling analysis of a single-walled carbon nanotube embedded in an elastic medium based on nonlocal elasticity and Timoshenko beam theory and using DQM. Phys. E 41(7), 1232–1239 (2009)

    Article  Google Scholar 

  24. Lin, W., Qiao, N.: In-plane vibration analyses of curved pipes conveying fluid using the generalized differential quadrature rule. Comput. Struct. 86(1), 133–139 (2008)

    Article  Google Scholar 

  25. Fallah, A., Aghdam, M.M.: Nonlinear free vibration and post-buckling analysis of functionally graded beams on nonlinear elastic foundation. Eur. J. Mech. A Solid. 30(4), 571–583 (2011)

    Article  MATH  Google Scholar 

  26. Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill, New York (1961)

    Google Scholar 

  27. Huang, Y., Li, X.F.: Buckling of functionally graded circular columns including shear deformation. Mater. Des. 31(7), 3159–3166 (2010)

    Article  Google Scholar 

  28. Huang, Y., Li, X.F.: Bending and vibration of circular cylindrical beams with arbitrary radial nonhomogeneity. Int. J. Mech. Sci. 52(4), 595–601 (2010)

    Article  Google Scholar 

  29. Zhang, P., Fu, Y.M.: A higher-order beam model for tubes. Eur. J. Mech. A Solids 38, 12–19 (2013)

  30. Fu, Y.M., Zhong, J., Shao, X.F., et al.: Thermal postbuckling analysis of functionally graded tubes based on a refined beam model. Int. J. Mech. Sci. 96, 58–64 (2015)

    Article  Google Scholar 

  31. Zhong, J., Fu, Y.M., Wan, D.T., et al.: Nonlinear bending and vibration of functionally graded tubes resting on elastic foundations in thermal environment based on a refined beam model. Appl. Math. Model. 40, 7601–7614 (2016)

    Article  MathSciNet  Google Scholar 

  32. Sofiyev, A.H.: Thermal buckling of FGM shells resting on a two-parameter elastic foundation. Thin Wall Struct. 49(10), 1304–1311 (2011)

    Article  MathSciNet  Google Scholar 

  33. Wang, Z.-X., Shen, H.-S.: Nonlinear dynamic response of nanotube-reinforced composite plates resting on elastic foundations in thermal environments. Nonlinear Dyn. 70, 735–754 (2012)

    Article  MathSciNet  Google Scholar 

  34. Fallah, A., Aghdam, M.M.: Thermo-mechanical buckling and nonlinear free vibration analysis of functionally graded beams on nonlinear elastic foundation. Compos. Part B Eng. 43, 1523–1530 (2012)

    Article  Google Scholar 

  35. Shen, H.-S., Wang, Z.-X.: Nonlinear analysis of shear deformable FGM beams resting on elastic foundations in thermal environments. Int. J. Mech. Sci. 81, 195–206 (2014)

    Article  Google Scholar 

  36. Taczała, M., Buczkowski, R., Kleiber, M.: Nonlinear free vibration of pre-and post-buckled FGM plates on two-parameter foundation in the thermal environment. Compos. Struct. 137, 85–92 (2016)

    Article  Google Scholar 

  37. Winkler, E.: Die Lehre von der Elustizitat und Festigkeit. Dominicus, Prague (1867)

    Google Scholar 

  38. Feng, Z.H., Cook, R.D.: Beam element on two-parameter elastic foundation. J. Eng. Mech. Div. 109, 1390–1402 (1983)

    Article  Google Scholar 

  39. Sapountzakis, E.J., Kampitsis, A.E.: Nonlinear analysis of shear deformable beam-columns partially supported on tensionless three-parameter foundation. Arch. Appl. Mech. 81, 1833–1851 (2011)

    Article  MATH  Google Scholar 

  40. Fallah, A., Aghdam, M.M.: Thermo-mechanical buckling and nonlinear free vibration analysis of functionally graded beams on nonlinear elastic foundation. Compos. Part B Eng. 43(3), 1523–1530 (2012)

    Article  Google Scholar 

  41. Hutchinson, J.R.: Shear coefficients for Timoshenko beam theory. J. Appl. Mech. 68(1), 87–92 (2001)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China under Grant No. 11272117 and the National Science Foundation for Young Scientists of China under Grant No. 11402082.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Fu, Y., Zhong, J. et al. Nonlinear dynamic responses of functionally graded tubes subjected to moving load based on a refined beam model. Nonlinear Dyn 88, 1441–1452 (2017). https://doi.org/10.1007/s11071-016-3321-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-3321-0

Keywords

Navigation