Skip to main content
Log in

Stability and Hopf bifurcation of a delayed-diffusive predator–prey model with hyperbolic mortality and nonlinear prey harvesting

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, a delayed-diffusive predator–prey model with hyperbolic mortality and nonlinear prey harvesting subject to the homogeneous Neumann boundary conditions is investigated. Firstly, the global asymptotic stability of the unique positive constant equilibrium is obtained by an iteration technique. Secondly, regarding time delay as a bifurcation parameter and using the normal form theory and center manifold theorem, the existence, stability and direction of bifurcating periodic solutions are demonstrated, respectively. Finally, numerical simulations are conducted to illustrate the theoretical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Sambath, M., Balachandran, K., Suvinthra, M.: Stability and Hopf bifurcation of a diffusive predator-prey model with hyperbolic mortality. Complexity (2015). doi:10.1002/cplx.21708

    MATH  Google Scholar 

  2. Sharma, A., Sharma, A.K., Agnihotri, K.: Analysis of a toxin producing phytoplankton–zooplankton interaction with Holling IV type scheme and time delay. Nonlinear Dyn. 81, 13–25 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Misra, O.P., Sinha, P., Singh, C.: Dynamics of one-prey two-predator system with square root functional response and time lag. Int. J. Biomath. 08, 1550029 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Moussaouia, A., Bassaida, S., Dadsb, E.H.A.: The impact of water level fluctuations on a delayed prey–predator model. Nonlinear Anal. Real World Appl. 21, 170–184 (2015)

    Article  MathSciNet  Google Scholar 

  5. Sun, X.G., Wei, J.J.: Dynamics of an infection model with two delays. Int. J. Biomath. 08, 1550068 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chakraborty, K., Haldar, S., Kar, T.K.: Global stability and bifurcation analysis of a delay induced prey–predator system with stage structure. Nonlinear Dyn. 73, 1307–1325 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ruan, S.G.: On nonlinear dynamics of predator–prey models with discrete delay. Math. Model. Nat. Phenom. 4, 140–188 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Sahoo, B., Poria, S.: Effects of additional food on an ecoepidemic model with time delay on infection. Appl. Math. Comput. 245, 17–35 (2014)

    MathSciNet  MATH  Google Scholar 

  9. Sahoo, B., Poria, S.: Effects of additional food in a delayed predator–prey model. Math. Biosci. 261, 62–73 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Wang, M.X.: Stability and Hopf bifurcation for a prey–predator model with prey-stage structure and diffusion. Math. Biosci. 212(2), 149–160 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Yi, F.Q., W, J.J., Shi, J.P.: Diffusion-driven instability and bifurcation in the Lengyel–Epstein system. Nonlinear Anal. Real World Appl. 9, 1038–1051 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Yi, F.Q., W, J.J., Shi, J.P.: Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator–prey system. J. Differ. Equ. 246, 1944–1977 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Du, L.L., Wang, M.X.: Hopf bifurcation analysis in the 1-D Lengyel–Epstein reaction-diffusion model. J. Math. Anal. Appl. 366, 473–485 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hu, G., Li, W.: Hopf biurcation analysis for a delayed predator–prey system with diffusion effects. Nonlinear Anal. Real World Appl. 11, 819–826 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ge, Z., He, Y.: Diffusion effect and stability analysis of a predator–prey system described by a delayed reaction–diffusion equations. J. Math. Anal. Appl. 339, 1432–1450 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Yan, X.: Stability and Hopf bifurcation for a delayed prey–predator system with diffusion effects. Appl. Math. Comput. 192, 552–566 (2007)

    MathSciNet  MATH  Google Scholar 

  17. Su, Y., Wei, J.J., Shi, J.P.: Hopf bifurcations in a reaction–diffusion population model with delay effect. J. Differ. Equ. 247, 1156–1184 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Chen, S.S., Shi, J.P., Wei, J.J.: Global stability and Hopf bifurcation in a delayed diffusive Leslie–Gower predator–prey system. Int. J. Bifurc. Chaos 22, 379–397 (2012)

    MathSciNet  MATH  Google Scholar 

  19. Zuo, W.J., Wei, J.J.: Stability and bifurcation analysis in a diffusive Brusselator system with delayed feedback control. Int. J. Bifurc. Chaos 22, 221–234 (2012)

    Article  MATH  Google Scholar 

  20. Chang, X.Y., Wei, J.J.: Stability and Hopf bifurcation in a diffusive predator–prey system incorporating a prey refuge. Math. Biosci. Eng. 10, 979–996 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Wang, X.C., Wei, J.J.: Dynamics in a diffusive predator–prey system with strong Allee effect and Ivlev-type functional response. J. Math. Anal. Appl. 422, 1447–1462 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Yang, R.Z., Wei, J.J.: Stability and bifurcation analysis of a diffusive prey–predator system in Holling type III with a prey refuge. Nonlinear Dyn. 79, 631–646 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Yang, R.Z.: Hopf bifurcation analysis of a delayed diffusive predator–prey system with nonconstant death rate. Chaos Solitons Fractals 81(6), 224–232 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Yang, R.Z., Zhang, C.R.: Dynamics in a diffusive predator–prey system with a constant prey refuge and delay. Nonlinear Anal. Real World Appl. 31, 1–22 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. Yang, R.Z., Zhang, C.R.: The effect of prey refuge and time delay on a diffusive predator–prey system with hyperbolic mortality. Complexity 50(3), 105–113 (2016)

    Google Scholar 

  26. Li, Y.: Dynamics of a diffusive predator–prey model with hyperbolic mortality. Nonlinear Dyn. 85, 2425–2436 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ghorai, S., Poria, S.: Pattern formation and controlof spatiotemporal chaos in a reaction diffusion prey–predator system supplying additional food. Chaos Solitons Fractals 85, 57–67 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ghorai, S., Poria, S.: Turing patterns induced by cross-diffusion in a predator–prey system in presence of habitat complexity. Chaos Solitons Fractals 91, 421–429 (2016)

  29. Xiao, M., Cao, J.D.: Hopf bifurcation and non-hyperbolic equilibrium in a ratio-dependent predator–prey model with linear harvesting rate: analysis and computation. Math. Comput. Model. 50, 360–379 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kar, T., Pahari, U.: Modelling and analysis of a prey–predator system with stage-structure and harvesting. Nonlinear Anal. Real World Appl. 8, 601–609 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  31. Zhang, L., Wang, W.J., Xue, Y.K.: Spatiotemporal complexity of a predator–prey system with constant harvest rate. Chaos Solitons Fractals 41, 38–46 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  32. Chang, X.Y., Wei, J.J.: Hopf bifurcation and optimal control in a diffusive predator–prey system with time delay and prey harvesting. Nonlinear Anal. Model. Control 17, 379–409 (2012)

    MathSciNet  MATH  Google Scholar 

  33. Kar, T.: Modelling and analysis of a harvested prey–predator system incorporating a prey refuge. J. Comput. Appl. Math. 185, 19–33 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  34. Lenzini, P., Rebaza, J.: Non-constant predator harvesting on ratio-dependent predator–prey models. Appl. Math. Sci. 4, 791–803 (2010)

    MathSciNet  MATH  Google Scholar 

  35. Feng, P.: On a diffusive predator–prey model with nonlinear harvesting. Math. Biosci. Eng. 11, 807–821 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  36. Gupta, R.P., Chandra, P.: Bifurcation analysis of modified Leslie–Gower predator–prey model with Michaelis–Menten type prey harvesting. J. Math. Anal. Appl. 398, 278–295 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  37. Li, Y., Wang, M.X.: Dynamics of a diffusive predator–prey model with modified Leslie–Gower term and Michaelis–Menten type prey harvesting. Acta Appl. Math. 69, 398–410 (2015)

    MathSciNet  MATH  Google Scholar 

  38. Clark, C.W., Mangel, M.: Aggregation and fishery dynamics: a theoretical study of schooling and the Purse Seine tuna fisheries. Fish. Bull. 77, 317–337 (1979)

    Google Scholar 

  39. Wang, M., Pang, P.Y.: Global asymptotic stability of positive steady states of a diffusive ratio-dependent prey–predator model. Appl. Math. Lett. 21, 1215–1220 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  40. Wu, J.: Theory and Applications of Partial Functional Differential Equations. Springer, New York (1996)

    Book  MATH  Google Scholar 

  41. Ruan, S.G., Wei, J.J.: On the zeros of transcendental functions with applications to stability of delay differential equations with two delays. Dyn. Contin. Discrete Impul. Syst. Ser. A Math. Anal. 10, 863–874 (2003)

    MathSciNet  MATH  Google Scholar 

  42. Faria, T.: Normal forms and Hopf bifurcation for partial differential equations with delays. Trans. Am. Math. Soc. 352, 2217–2238 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  43. Hassard, B., Kazarinoff, N., Wan, Y.: Theory and Applications of Hoph Bifurcation. Cambridge University Press, Cambridge (1981)

    MATH  Google Scholar 

  44. Hale, J.: Theory of Functional Differential Equations. Springer, Berlin (1977)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Shandong Province of China (No. ZR2014AQ014), the Special Funds of the National Natural Science Foundation of China (No. 11426217), the NSFC (Nos. 11602305, 11501572, 11401586 and 11301333) and the Fundamental Research Funds for the Central Universities (Nos. 15CX05064A and 16CX02055A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, F., Li, Y. Stability and Hopf bifurcation of a delayed-diffusive predator–prey model with hyperbolic mortality and nonlinear prey harvesting. Nonlinear Dyn 88, 1397–1412 (2017). https://doi.org/10.1007/s11071-016-3318-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-3318-8

Keywords

Mathematics Subject Classification

Navigation