Skip to main content
Log in

Stochastic resonance system with linear random frequency fluctuation for aperiodic LFM signal

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, we investigate the stochastic resonance (SR) phenomenon in the aperiodic linear frequency-modulated (LFM) signal driving stochastic dynamical system with linear random frequency fluctuation under the external additive noise and internal multiplicative symmetric dichotomous noise. Applying the fractional Fourier transform operator and Laplace transform technique, we obtain the exact expressions of system stationary state response. By studying the impacts of the external parameters, including the chirp rate and centroid frequency of LFM driving signal, and the internal parameters, including the system intrinsic frequency, noise intensity, and correlation rate of the internal noise, we find the non-monotonic behaviors of the output amplitude. The results indicate that the wide sense of SR phenomena occurs in the proposed LFM signal driving stochastic dynamical system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Benzi, R., Sutera, A., Vulpiani, A.: The mechanism of stochastic resonance. J. Phys. A 14, L453–L457 (1981)

    Article  MathSciNet  Google Scholar 

  2. Benzi, R., Parisi, G., Sutera, A., Vulpiani, A.: Stochastic resonance in climatic change. Tellus 34, 10–16 (1982)

    Article  MATH  Google Scholar 

  3. Benzi, R.: Stochastic resonance: from climate to biology. Nonlinear Process. Geophys. 17, 431–441 (2010)

    Article  Google Scholar 

  4. Gammaitoni, L., Hänggi, P., Jung, P., Marchesoni, F.: Stochastic resonance: a remarkable idea that changed our perception of noise. Eur. Phys. J. B 69, 1–3 (2009)

    Article  Google Scholar 

  5. McDonnell, M.D., Abbott, D.: What is stochastic resonance? Definitions, misconception, debates, and its relevance to biology. PLoS Comput. Biol. 5, e1000348 (2009)

    Article  MathSciNet  Google Scholar 

  6. Wellens, T., Shatokhin, V., Buchleitner, A.: Stochastic resonance. Rep. Prog. Phys. 67, 45–105 (2004)

    Article  MATH  Google Scholar 

  7. Berdichevsky, V., Gitterman, M.: Stochastic resonance in linear systems subject to multiplicative and additive noise. Phys. Rev. E 60, 1494–1499 (1999)

    Article  Google Scholar 

  8. Li, J.H., Han, Y.X.: Phenomenon of stochastic resonance caused by multiplicative asymmetric dichotomous noise. Phys. Rev. E 74, 051115 (2006)

    Article  Google Scholar 

  9. Gitterman, M.: Harmonic oscillator with fluctuating damping parameter. Phys. Rev. E 69, 041101 (2004)

    Article  MathSciNet  Google Scholar 

  10. Douglass, J.K., Wilkens, L., Pantazelou, E., Moss, F.: Noise enhancement of information transfer in crayfish mechanoreceptors by stochastic resonance. Nature 365, 337–340 (1993)

    Article  Google Scholar 

  11. Wiesenfeld, K., Moss, F.: Stochastic resonance and the benefits of noise: from ice ages to crayfish and SQUIDs. Nature 373, 33–36 (1995)

    Article  Google Scholar 

  12. Gitterman, M.: Classical harmonic oscillator with multiplicative noise. Phys. A 352, 309–334 (2005)

    Article  Google Scholar 

  13. Gammaitoni, L., Marchesoni, F., Santucci, S.: Stochastic resonance as a bona fide resonance. Phys. Rev. Lett 74, 1052–1055 (1995)

    Article  Google Scholar 

  14. Gammaitoni, L., Hanggi, P., Jung, P., Marchesoni, F.: Stochastic resonance. Rev. Modern Phys. 70, 223–287 (1998)

    Article  Google Scholar 

  15. Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. Amblard, F., Maggs, A., Yurke, B., Pargellis, A., Leibler, S.: Subdiffusion and anomalous local viscoelasticity in actin networks. Phys. Rev. Lett. 77, 4470–4473 (1996)

    Article  Google Scholar 

  17. Banks, D., Fradin, C.: Anomalous diffusion of proteins due to molecular crowding. Biophys. J. 89, 2960–2971 (2005)

    Article  Google Scholar 

  18. Caspi, A., Granek, R., Elbaum, M.: Diffusion and directed motion in cellular transport. Phys. Rev. E 66, 011916 (2002)

    Article  Google Scholar 

  19. Lindner, B., Kostur, M., Schimansky-Geier, L.: Optimal diffusive transport in a tilted periodic potential. Fluct. Noise Lett. 1, R25–R39 (2001)

    Article  Google Scholar 

  20. Atakhorrami, M., Koenderink, G., Schmidt, C., MacKintosh, F.: Short-time inertial response of viscoelastic fluids: observation of vortex propagation. Phys. Rev. Lett. 95, 208302 (2005)

    Article  Google Scholar 

  21. Metzler, R., Barkai, E., Klafter, J.: Deriving fractional Fokker–Planck equations from a generalized master equation. Europhys. Lett. 46, 431–436 (1999)

    Article  MathSciNet  Google Scholar 

  22. Lutz, E.: Fractional Langevin equation. Phys. Rev. E 64, 051106 (2001)

    Article  Google Scholar 

  23. Kou, S.C.: Stochastic modeling in nanoscale biophysics: subdiffusion within proteins. Ann. Appl. Stat. 2, 501–535 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Deng, W.H., Barkai, E.: Ergodic properties of fractional Brownian–Langevin motion. Phys. Rev. E 79, 011112 (2009)

    Article  MathSciNet  Google Scholar 

  25. Soika, E., Mankin, R.: Trichotomous-noise-induced stochastic resonance for a fractional oscillator. Adv. Biomed. Res 1790(5125), 440–445 (2010)

    Google Scholar 

  26. Soika, E., Mankin, R., Ainsaar, A.: Resonant behavior of a fractional oscillator with fluctuating fre-quency. Phys. Rev. E 81, 011141 (2010)

    Article  Google Scholar 

  27. Zhong, S.C., Gao, S.L., Wei, K., Ma, H.: The resonant behavior of an over-damped linear fractional Langevin equation. Acta Phys. Sin. 61, 170501 (2012)

    Google Scholar 

  28. Zhong, S.C., Wei, K., Gao, S.L., Ma, H.: Stochastic resonance in a linear fractional Langevin equation. J Stat. Phys. 149, 867–880 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. Chen, H., Varshney, P.K., Kay, S.M., Michels, J.H.: Theory of the stochastic resonance effect in signal detection: Part 1—Fixed detectors. IEEE Trans. Signal Process. 55, 3172–3184 (2006)

    Article  Google Scholar 

  30. Chen, H., Varshney, P.K.: Theory of the stochastic resonance effect in signal detection: Part 2-Variable detectors. IEEE Trans. Signal Process 56, 5031–5041 (2007)

    Article  MathSciNet  Google Scholar 

  31. Leng, Y., Wang, T., Guo, Y., Xu, Y., Fan, S.: Engineering signal processing based on bistable stochastic resonance. Mech. Syst. Signal Process. 21(1), 21138–21150 (2007)

    Article  Google Scholar 

  32. Tan, J., Chen, X., Wang, J., Chen, H., Cao, H., Zi, Y., He, Z.: Study of frequency-shifted and re-scaling stochastic resonance and its application to fault diagnosis. Mech. Syst. Signal Process. 23, 811–822 (2009)

    Article  Google Scholar 

  33. Deng, L., Cheng, M., Wang, X.: Secure OFDM-PON system based on chaos and fractional Fourier transform techniques. J. Lightwave Technol. 32, 2629–2635 (2014)

    Article  Google Scholar 

  34. Tao, R., Meng, X., Wang, Y.: Transform order division multiplexing. IEEE Trans. Signal Process. 59, 598–609 (2011)

    Article  MathSciNet  Google Scholar 

  35. Wang, H.Q., Ma, H.: MIMO OFDM systems based on the optimal fractional Fourier transform. Wirel. Personal Commun. 55, 265–272 (2010)

    Article  Google Scholar 

  36. Wang, H.Q.: Biorthogonal frequency division multiple access cellular system with angle division reuse scheme. Wirel. Personal Commun. 70, 1553–1573 (2013)

    Article  Google Scholar 

  37. Zhang, X., Cai, J., Liu, L., Yang, Y.: An integral transform and its applications in parameter estimation of LFM signals. Circuits Syst. Signal Process. 31, 1017–1031 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  38. Liu, Y., Xing, M., Guo, R., Zhang, L., Bai, X., Bao, Z.: Sandglass transformation for synthetic aperture radar detection and imaging of ship at low signal-to-clutter-plus-noise ratio. IET Radar Sonar Navig. 5, 361–373 (2011)

    Article  Google Scholar 

  39. Geroleo, F., Brandt-Pearce, M.: Detection and estimation of LFMCW radar signals. IEEE Trans. Aerosp. Electron. Syst. 48, 405–418 (2012)

    Article  Google Scholar 

  40. Pang, C., Tao, S., Tao, R., Zhang, N.: Detection of high-speed and accelerated target based on the linear frequency modulation radar. IET Radar Sonar Navig. 8, 37–47 (2014)

    Article  Google Scholar 

  41. Collins, J., Chow, C., Imhoff, T.: Aperiodic stochastic resonance in excitable systems. Phys. Rev. E 52, R3321–R3324 (1995)

    Article  Google Scholar 

  42. Collins, J., Chow, C.C., Capela, A.C., Imhoff, T.T.: Aperiodic stochastic resonance. Phys. Rev. E 54, 5575–5584 (1996)

    Article  Google Scholar 

  43. Peng, H., Zhong, S., Tu, Z., Ma, H.: Stochastic resonance of over-damped bistable system driven by chirp signal and Gaussian white noise. Acta Phys. Sin. 62, 080501 (2013)

    Google Scholar 

  44. Wang, H., Lv, W., Peng, H., Zhou, G.: Coordinative stochastic resonance filtering based inter-cell interference suppression in FrFT-OFDMA cellular systems. Wirel. Personal Commun. 83, 427–440 (2015)

    Article  Google Scholar 

  45. Pei, S., Ding, J.: Fractional Fourier transform, Wigner distribution, and filter design for stationary and nonstationary random processes. IEEE Trans. Signal Process. 58, 4079–4092 (2010)

    Article  MathSciNet  Google Scholar 

  46. Bruce, M., Kurt, W.: Theory of stochastic resonance. Phys. Rev. A 39, 4854–4869 (1989)

    Article  Google Scholar 

  47. Lai, Z., Leng, Y., Sun, J., Fan, S.: Weak characteristic signal detection based on scale transformation of Duffing oscillator. Acta Phys. Sin. 61, 050503 (2012)

    Google Scholar 

  48. Li, Q., Wang, T., Leng, Y., Wang, W., Wang, G.: Engineering signal processing based on adaptive step-changed stochastic resonance. Mech. Syst. Signal Process. 21, 2267–2279 (2007)

    Article  Google Scholar 

  49. He, H., Wang, T., Leng, Y., Zhang, Y., Li, Q.: Study on non-linear filter characteristic and engineering application of cascaded bistable stochastic resonance system. Mech. Syst. Signal Process. 21, 2740–2749 (2007)

    Article  Google Scholar 

  50. Shapiro, V.E., Loginov, V.M.: “Formulae of differentiation” and their use for solving stochastic equations. Phys. A 91, 563–574 (1978)

    Article  MathSciNet  Google Scholar 

  51. Laas, K., Mankin, R., Reiter, E.: Influence of memory time on the resonant behavior of an oscillatory system described by a generalized Langevin equation. Int. J Math. Models Methods Appl. Sci. 5, 280–289 (2011)

    Google Scholar 

  52. Soika, E., Mankin, R., Priimets, J.: Generalized Langevin equation with multiplicative trichotomous noise. Proc. Est. Acad. Sci. Phys. Math. 61, 113–127 (2012)

    Article  MATH  Google Scholar 

  53. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  54. Lin, L.F., Yu, L., Wang, H.Q., Zhong, S.C.: Parameter-adjusted stochastic resonance system for the aperiodic echo chirp signal in optimal FrFT domain. Commun. Nonlinear Sci. Numer. Simul. 43, 171–181 (2017)

  55. Ibrahim, R.A.: Excitation-induced stability and phase transition: a review. J. Vib. Control 12, 1093–1170 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  56. Mankin, R., Soika, E., Sauga, A., Ainsaar, A.: Fluctuation phenomena random processes noise and Brownian motion, Probability theory stochastic processes and statistics. Phys. Rev. E 77, 699–720 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers for the constructive comments and suggestions. This research is partially sponsored by the National Natural Science Foundation of China (Nos. 11301360 and 11601357), the Fundamental Research Funds for the Central Universities (No.106112016CDJXY100001), the Basic and Cutting-edge Research Program of Chongqing (No.cstc2016jcyjA0014), and the Science and Technology Project of the Education Department of Fujian Province (No. JA14112).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huiqi Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, L., Wang, H. & Lv, W. Stochastic resonance system with linear random frequency fluctuation for aperiodic LFM signal. Nonlinear Dyn 88, 1361–1371 (2017). https://doi.org/10.1007/s11071-016-3315-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-3315-y

Keywords

Navigation