Skip to main content
Log in

Congested traffic patterns of two-lane lattice hydrodynamic model with on-ramp

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper attempts to reproduce the empirical phenomena of congested traffic flow with an on-ramp through a microscopic traffic model. First, an improved two-lane lattice hydrodynamic traffic flow model is proposed, which is capable of avoiding vehicles backward moving in original lattice hydrodynamic model. Then, the deterministic and stochastic on-ramps are designed and mapped into the new lattice model to reproduce the empirical phenomena. For the stochastic case, many empirical congested patterns are reproduced, such as moving localized cluster, triggered stop-and-go traffic (TSG), pinned localized cluster (PLC), oscillating congested traffic (OCT) and homogeneous congested traffic. For the deterministic case, a number of combination patterns of HST, PLC, TSG and OCT are found. Taken together, these results suggest that the present model is able to predict the congested traffic patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Kerner, B.S., Rehborn, H.: Experimental properties of phase transitions in traffic flow. Phys. Rev. Lett. 79(20), 4030–4033 (1997)

    Article  Google Scholar 

  2. Helbing, D., Treiber, M.: Gas-kinetic-based traffic model explaining observed hysteretic phase transition. Phys. Rev. Lett. 81(14), 3042–3045 (1998)

    Article  Google Scholar 

  3. Helbing, D., Hennecke, A., Treiber, M.: Phase diagram of traffic states in the presence of inhomogeneities. Phys. Rev. Lett. 82(21), 4360–4363 (1999)

    Article  Google Scholar 

  4. Lee, H.Y., Lee, H.W., Kim, D.: Dynamic states of a continuum traffic equation with on-ramp. Phys. Rev. E 59(5), 5101–5111 (1999)

    Article  MathSciNet  Google Scholar 

  5. Gupta, A.K., Katiyar, V.K.: Phase transition of traffic states with on-ramp. Phys. A 371, 674–682 (2006)

    Article  Google Scholar 

  6. Tang, C.F., Jiang, R., Wu, Q.S.: Phase diagram of speed gradient model with an on-ramp. Phys. A 377, 641–650 (2007)

    Article  Google Scholar 

  7. Tang, T.Q., Huang, H.J., Wong, S.C., Gao, Z.Y., Zhang, Y.: A new macro model for traffic flow on a highway with ramps and numerical tests. Commun. Theor. Phys. 51, 71–78 (2009)

    Article  MATH  Google Scholar 

  8. Helbing, D., Treber, M., Kesting, A., Schonhof, M.: Theoretical vs. empirical classification and prediction of congested traffic states. Eur. Phys. J. B 69, 583–598 (2009)

    Article  Google Scholar 

  9. Berg, P., Woods, A.: On-ramp simulations and solitary waves of a car-following model. Phys. Rev. E 64, 035602(R) (2001)

    Article  Google Scholar 

  10. Jiang, R., Wu, Q.S., Wang, B.H.: Cellular automata model simulating traffic interactions between on-ramp and main road. Phys. Rev. E 66, 036104 (2002)

    Article  Google Scholar 

  11. Treiber, M., Kesting, A.: Traffic Flow Dynamics: Data, Models and Simulation. Springer, Heidelberg (2013)

    Book  MATH  Google Scholar 

  12. Nagatani, T.: Modified KdV equation for jamming transition in the continuum models of traffic. Phys. A 261, 599–607 (1998)

    Article  MathSciNet  Google Scholar 

  13. Nagatani, T.: TDGL and MKdV equations for jamming transition in the lattice models of traffic. Phys. A 264, 581–592 (1999)

    Article  Google Scholar 

  14. Nagatani, T.: Jamming transitions and the modified Korteweg–de Vries equation in a two-lane traffic flow. Phys. A 265, 297–310 (1999)

    Article  Google Scholar 

  15. Kang, Y.R., Sun, D.H.: Lattice hydrodynamic traffic flow model with explicit drivers physical delay. Nonlinear Dyn. 71(3), 531–537 (2012)

    Article  MathSciNet  Google Scholar 

  16. Ge, H.X., Zheng, P.J., Lo, S.M., Cheng, R.J.: TDGL equation in lattice hydrodynamic model considering drivers physical delay. Nonlinear Dyn. 76(1), 441–445 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gupta, A.K., Redhu, P.: Analyses of the drivers anticipation effect in a new lattice hydrodynamic traffic flow model with passing. Nonlinear Dyn. 76(2), 1001–1011 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gupta, A.K., Sharma, S., Redhu, P.: Effect of multi-phase optimal velocity function on jamming transition in a lattice hydrodynamic model with passing. Nonlinear Dyn. 76(3), 1091–1108 (2015)

    Article  Google Scholar 

  19. Redhu, P., Gupta, A.K.: Jamming transitions and the effect of interruption probability in a lattice traffic flow model with passing. Phys. A 421, 249–260 (2015)

    Article  Google Scholar 

  20. Sharma, S.: Modeling and analyses of driver’s characteristics in a traffic system with passing. Nonlinear Dyn. 86(3), 2093–2104 (2016)

    Article  MathSciNet  Google Scholar 

  21. Sharma, S.: Effect of driver’s anticipation in a new two-lane lattice model with the consideration of optimal current difference. Nonlinear Dyn. 81, 991–1003 (2015)

    Article  Google Scholar 

  22. Gupta, A.K., Redhu, P.: Analyses of driver’s anticipation effect in sensing relative flux in a new lattice model for two-lane traffic system. Phys. A 392, 5622–5632 (2013)

    Article  Google Scholar 

  23. Redhu, P., Gupta, A.K.: Phase transition in a two-dimensional triangular flow with consideration of optimal current difference effect. Nonlinear Dyn. 78, 957–968 (2014)

    Article  MathSciNet  Google Scholar 

  24. Gupta, A.K., Redhu, P.: Jamming transition of a two-dimensionaL traffic dynamics with consideration of optimal current difference. Phys. Lett. A 377, 2027–2033 (2014)

  25. Sharma, S.: Lattice hydrodynamic modeling of two-lane traffic flow with timid and aggressive driving behavior. Phys. A 421, 401–411 (2015)

    Article  Google Scholar 

  26. Ge, H.X., Cui, Y., Zhu, K.Q., Cheng, R.J.: The control method for the lattice hydrodynamic model. Commun. Nonlinear Sci. Numer. Simul. 22(1–3), 903–908 (2015)

    Article  Google Scholar 

  27. Redhu, P., Gupta, A.K.: Delayed-feedback control in a Lattice hydrodynamic model. Commun. Nonlinear Sci. Numer. Simul. 27(1–3), 263–270 (2015)

    Article  MathSciNet  Google Scholar 

  28. Gupta, A.K., Redhu, P.: Analyses of a modified two-lane lattice model by considering the density difference effect. Commun. Nonlinear Sci. Numer. Simul. 19(5), 1600–1610 (2014)

    Article  MathSciNet  Google Scholar 

  29. Tian, J.F., Jia, B., Li, X.G., Gao, Z.Y.: Flow difference effect in the lattice hydrodynamic model. Chin. Phys. B 19(4), 040303 (2010)

    Article  Google Scholar 

  30. Tian, J.F., Yuan, Z.Z., Jia, B., Li, M.H., Jiang, G.J.: The stabilization effect of the density difference in the modified lattice hydrodynamic model of traffic flow. Phys. A 391(19), 4476–4482 (2012)

    Article  Google Scholar 

  31. Wang, T., Gao, Z.Y., Zhang, J., Zhao, X.M.: A new lattice hydrodynamic model for two-lane traffic with the consideration of density difference effect. Nonlinear Dyn. 75(1), 27–34 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. Peng, G.H., Cai, X.H., Liu, C.Q., Tuo, M.X.: A new lattice model of traffic flow with the anticipation effect of potential lane changing. Phys. Lett. A 376, 447–451 (2011)

    Article  MATH  Google Scholar 

  33. Peng, G.H., Nie, Y.F., Cao, B.F., Liu, C.Q.: A driver’s memory lattice model of traffic flow and its numerical simulation. Nonlinear Dyn. 67(3), 1811–1815 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  34. Gupta, A.K., Dhiman, I.: Phase diagram of a continuum traffic flow model with a static bottleneck. Nonlinear Dyn. 79(1), 663–671 (2014)

    Article  MathSciNet  Google Scholar 

  35. Redhu, P., Gupta, A.K.: Effect of forward looking sites on a multi-phase lattice hydrodynamic model. Phys. A 445, 150–160 (2016)

    Article  MathSciNet  Google Scholar 

  36. Gupta, A.K., Sharma, S., Redhu, P.: Analyses of lattice traffic flow model on a gradient highway. Commun. Theor. Phys. 62, 393–404 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research is supported in part by the National Natural Science Foundation of China (Grant Nos. 71571109, 71621001, 71471104, 71601015, 61472195), the Taishan Scholar Project Fund of Shandong Province of China, the Natural Science Foundation of Shandong Province (Grant No. ZR2013GQ001), the Fundamental Research Funds for the Central Universities (No. 2015JBM060).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Zhang, J., Gao, Z. et al. Congested traffic patterns of two-lane lattice hydrodynamic model with on-ramp. Nonlinear Dyn 88, 1345–1359 (2017). https://doi.org/10.1007/s11071-016-3314-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-3314-z

Keywords

Navigation