Skip to main content
Log in

Nonlinear disturbance observer-based robust control of attitude tracking of rigid spacecraft

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Robust control of attitude tracking system between two rigid spacecraft is addressed using nonlinear disturbance observer-based control technique. A relative attitude dynamics model is derived for spacecraft tracking maneuver, where parameter uncertainty and environmental disturbances are considered as disturbance torques. A composite control technique is proposed for robust attitude tracking of a rigid spacecraft about a spacecraft under multiple disturbances by combining a nonlinear disturbance observer with an asymptotic tracking control. The proposed nonlinear disturbance observer is used to enhance the disturbance attenuation ability and robustness performance against uncertain inertia parameter and disturbances by estimating and compensating for the disturbances through feedforward. Stability and tracking performance of the nonlinear disturbance observer are analyzed. Furthermore, the stability of the composed control approach consisting of the asymptotic tracking control and nonlinear disturbance observer is established through Lyapunov method. Simulation results show that the composite control technique can significantly enhance disturbance attenuation ability, robust dynamics performance and the desired relative attitude tracking accuracy of a rigid spacecraft under external disturbances and uncertain inertia matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

\({\varvec{q}_c}\) :

Quaternion of the chief spacecraft

\({\varvec{q}_d}\) :

Quaternion of the deputy spacecraft

\({\varvec{\omega }_c}\) :

Angular velocity of the chief spacecraft

\({\varvec{\omega }_d}\) :

Angular velocity of the deputy spacecraft

\({\varvec{q}_d}\) :

Quaternion of the deputy spacecraft

\({\varvec{q}}\) :

Relative quaternion between the chief and deputy spacecraft body frames

\({\varvec{\omega }}\) :

Angular velocity of the deputy relative to the chief

\(\varvec{d}\) :

Lumped disturbance

\({\hat{{\varvec{d}}}}\) :

Lumped disturbance estimate

\(\varvec{d}_e\) :

Estimate error of the lumped disturbance

\(\varvec{\ell }\) :

Sliding surface

\(\varvec{z}\) :

Internal state of the nonlinear observer

\(\varvec{p}(\varvec{\omega })\) :

Vector-valued function to be designed in the nonlinear observer

\(\varvec{u}_c\) :

Asymptotic tracking control

\(\varvec{u}\) :

Composite control

\(\{\varvec{B}_c\}\) :

Vector expressed in the body frame of the chief spacecraft

\(\{\varvec{B}_d\}\) :

Vector expressed in the body frame of the deputy spacecraft

c :

Notation for the body frame of the chief spacecraft

d :

Notation for the body frame of the deputy spacecraft

References

  1. Lu, K., Xia, Y.: Finite-time attitude stabilization for rigid spacecraft. Int. J. Robust Nonlinear Control 25(1), 32–51 (2016)

    MathSciNet  MATH  Google Scholar 

  2. Zhu, Z., Xia, Y., Fu, M.: Attitude stabilization of rigid spacecraft with finite-time convergence. Int. J. Robust Nonlinear Control 21(6), 686–702 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alipour, K., Zarafshan, P., Ebrahimi, A.: Dynamics modelling and attitude control of a flexible satellite with active stabilizers. Nonlinear Dyn. 84(4), 2535–2545 (2016)

    Article  Google Scholar 

  4. Liu, H., Li, D., Xi, J., Zhong, Y.: Robust attitude controller design for miniature quadrotors. Int. J. Robust Nonlinear Control 26(4), 681–696 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Jovan, D., Bovkovic, S.-M.L., Mehra, R.K.: Robust adaptive variable structure control of spacecraft under control input saturation. J. Guid. Control Dyn. 24(1), 14–22 (2001)

    Article  Google Scholar 

  6. Wallsgrove, R.J., Akella, M.R.: Globally stabilizing saturated attitude control in the presence of bounded unknown disturbances. J. Guid. Control Dyn. 28(5), 957–963 (2005)

    Article  Google Scholar 

  7. Li, Z.-X., Wang, B.-L.: Robust attitude tracking control of spacecraft in the presence of disturbances. J. Guid. Control Dyn. 30(4), 1156–1159 (2007)

    Article  Google Scholar 

  8. Boskovic, J.D., Li, S.-M., Mehra, R.K.: Robust tracking control design for spacecraft under control input saturation. J. Guid. Control Dyn. 27(4), 627–633 (2004)

    Article  Google Scholar 

  9. Xia, Y., Fu, M., Wang, S.: Attitude tracking of rigid spacecraft with bounded disturbances. IEEE Trans. Ind. Electron. 58(2), 647–659 (2011)

    Article  Google Scholar 

  10. Chen, W.-H.: Nonlinear disturbance observer-enhanced dynamic inversion control of missiles. J. Guid. Control Dyn. 26(1), 161–166 (2003)

    Article  Google Scholar 

  11. Yang, J., Chen, W.-H., Li, S.: Non-linear disturbance observer-based robust control for systems with mismatched disturbances/uncertainties. IET Control Theory Appl. 5(18), 2053–2062 (2011)

    Article  MathSciNet  Google Scholar 

  12. Chen, W.-H., Yang, J., Guo, L., Li, S.: Disturbance-observer-based control and related methods—an overview. IEEE Trans. Ind. Electron. 63(2), 1083–1095 (2016)

    Article  Google Scholar 

  13. Liu, C.-S., Peng, H.: Disturbance observer based tracking control. J. Dyn. Syst. Measur. Control 122(2), 332–335 (1997)

    Article  Google Scholar 

  14. Guo, L., Chen, W.-H.: Disturbance attenuation and rejection for systems with nonlinearity via DOBC approach. Int. J. Robust Nonlinear Control 15(3), 109–125 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Li, B., Hu, Q., Ma, G.: Extended state observer based robust attitude control of spacecraft with input saturation. Aerosp. Sci. Technol. 50, 173–182 (2016)

    Article  Google Scholar 

  16. Lee, K., Back, J., Choy, I.: Nonlinear disturbance observer based robust attitude tracking controller for quadrotor UAVs. Int. J. Control Autom. Syst. 12(6), 1266–1275 (2014)

    Article  Google Scholar 

  17. Chen, Z., Huang, J.: Attitude tracking and disturbance rejection of rigid spacecraft by adaptive control. IEEE Trans. Ind. Electron. 54(3), 600 (2009)

    MathSciNet  Google Scholar 

  18. Wei, X., Guo, L.: Composite disturbance-observer-based control and terminal sliding mode control for non-linear systems with disturbances. Int. J. Control 82(6), 1082–1098 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Chen, W.-H., Ballance, D.J., Gawthrop, P.J., Gribble, J.J.: Nonlinear PID predictive controller. IEE Proc. Control Theory Appl. 146(6), 603–611 (1999)

    Article  Google Scholar 

  20. Wang, Z., Wu, Z.: Nonlinear attitude control scheme with disturbance observer for flexible spacecrafts. Nonlinear Dyn. 81(1), 257–264 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Crassidis, J.L., Junkins, J.L.: Optimal Estimation of Dynamic Systems. CRC Press, Boca Raton (2008)

    MATH  Google Scholar 

  22. Lefferts, E.J., Markley, F.L., Shuster, M.D.: Kalman filtering for spacecraft attitude estimation. J. Guid. Control Dyn. 5(5), 417–429 (1982)

  23. Schaub, H., Junkins, J.L.: Analytical Mechanics of Space Systems, 1st edn. American Institute of Aeronautics and Astronautics Inc., Reston (2003)

    Book  MATH  Google Scholar 

  24. Lu, K., Xia, Y., Fu, M., Yu, C.: Adaptive finite-time attitude stabilization for rigid spacecraft with actuator faults and saturation constraints. Int. J. Robust Nonlinear Control 26(1), 28–46 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. Cohn, P.M.: Further Algebra and Applications. Springer, London (2003)

    Book  MATH  Google Scholar 

  26. Yuan, J.S.: Closed-loop manipulator control using quaternion feedback. IEEE J. Robot. Autom. 4(4), 434–440 (1988)

    Article  MathSciNet  Google Scholar 

  27. Chen, Z., Huang, J.: Attitude tracking and disturbance rejection of rigid spacecraft by adaptive control. IEEE J Robot. Autom. 54(3), 600–605 (2009)

    MathSciNet  Google Scholar 

  28. Chen, W.-H., Ballance, D.J., Gawthrop, P.J., O’Reilly, J.: A nonlinear disturbance observer for robotic manipulators. IEEE J. Robot. Autom. 47(4), 932–938 (2000)

    Google Scholar 

  29. Slotine, J.J., Li, W.: Applied Nonlinear Control, 2nd edn. American Institute of Physics, New York (2005)

    MATH  Google Scholar 

  30. Wang, C., Chu, R., Ma, J.: Controlling a chaotic resonator by means of dynamic track control. Complexity 21(1), 370–378 (2015)

    Article  MathSciNet  Google Scholar 

  31. Zhu, Z., Xia, Y., Fu, M.: Adaptive sliding mode control for attitude stabilization with actuator saturation. IEEE Trans. Ind. Electron. 58(10), 4898–4907 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daero Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, D. Nonlinear disturbance observer-based robust control of attitude tracking of rigid spacecraft. Nonlinear Dyn 88, 1317–1328 (2017). https://doi.org/10.1007/s11071-016-3312-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-3312-1

Keywords

Navigation