Skip to main content
Log in

General bright–dark soliton solution to (2 + 1)-dimensional multi-component long-wave–short-wave resonance interaction system

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, we derive a general mixed (bright–dark) multi-soliton solution to a two-dimensional (2D) multi-component long-wave–short-wave resonance interaction (LSRI) system, which include multi-component short waves (SWs) and one-component long wave (LW) for all possible combinations of nonlinearity coefficients including positive, negative and mixed types. With the help of the KP hierarchy reduction method, we firstly construct two types of general mixed N-soliton solution (two-bright–one-dark soliton and one-bright–two-dark one for SW components) to the 2D three-component LSRI system in detail. Then by extending the corresponding analysis to the 2D multi-component LSRI system, a general mixed N-soliton solution in Gram determinant form is obtained. The expression of the mixed soliton solution also contains the general all bright and all dark N-soliton solution as special cases. In particular, for the soliton solution which include two-bright–one-dark soliton for SW components in three-component LSRI system, the dynamics analysis shows that solioff excitation and solioff interaction appear in two SW components which possess bright soliton, while V-type solitary and interaction take place in the other SW component and LW one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Manakov, S.V.: On the theory of two-dimensional stationary self-focusing of electromagnetic waves. Sov. Phys. JETP 38, 248–253 (1974)

    MathSciNet  Google Scholar 

  2. Radhakrishnan, R., Lakshmanan, M., Hietarinta, J.: Inelastic collision and switching of coupled bright solitons in optical fibers. Phys. Rev. E 56, 2213 (1997)

    Article  Google Scholar 

  3. Kanna, T., Lakshmanan, M.: Exact soliton solutions, shape changing collisions, and partially coherent solitons in coupled nonlinear Schrödinger equations. Phys. Rev. Lett. 86, 5043 (2001)

    Article  Google Scholar 

  4. Kanna, T., Lakshmanan, M., Dinda, P.T., Akhmediev, N.: Soliton collisions with shape change by intensity redistribution in mixed coupled nonlinear Schrödinger equations. Phys. Rev. E 73, 026604 (2006)

    Article  MathSciNet  Google Scholar 

  5. Kanna, T., Lakshmanan, M.: Exact soliton solutions of coupled nonlinear Schrödinger equations: shape-changing collisions, logic gates, and partially coherent solitons. Phys. Rev. E 67, 046617 (2003)

    Article  Google Scholar 

  6. Jakubowski, M.H., Steiglitz, K., Squier, R.: State transformations of colliding optical solitons and possible application to computation in bulk media. Phys. Rev. E 58, 6752 (1998)

    Article  Google Scholar 

  7. Steiglitz, K.: Time-gated Manakov spatial solitons are computationally universal. Phys. Rev. E 63, 016608 (2001)

    Article  Google Scholar 

  8. Benny, D.J.: A general theory for interactions between short and long waves. Stud. Appl. Math. 56, 15 (1977)

    Google Scholar 

  9. Zakharov, V.E.: Collapse of Langmuir waves. Sov. Phys. JETP 35, 908–914 (1972)

    Google Scholar 

  10. Yajima, N., Oikawa, M.: Formation and interaction of Sonic-Langmuir solitons inverse scattering method. Prog. Theor. Phys. 56, 1719–1739 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kivshar, Y.S.: Stable vector solitons composed of bright and dark pulses. Opt. Lett. 17, 1322–1324 (1992)

    Article  Google Scholar 

  12. Chowdhury, A., Tataronis, J.A.: Long wave-short wave resonance in nonlinear negative refractive index media. Phys. Rev. Lett. 100, 153905 (2008)

    Article  Google Scholar 

  13. Ma, Y.C.: Complete solution of the long wave-short wave resonance equations. Stud. Appl. Math. 59, 201–221 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  14. Djordjevic, V.D., Redekopp, L.G.: On two-dimensional packets of capillary-gravity waves. J. Fluid Mech. 79, 703–714 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ma, Y.C., Redekopp, L.G.: Some solutions pertaining to the resonant interaction of long and short waves. Phys. Fluids 22, 1872–1876 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dodd, R.K., Morris, H.C., Eilbeck, J.C., Gibbon, J.D.: Soliton and Nonlinear Wave Equations. Academic Press, London (1982)

    MATH  Google Scholar 

  17. Aguero, M., Frantzeskakis, D.J., Kevrekidis, P.G.: Asymptotic reductions of two coupled (2 + 1)-dimensional nonlinear Schrödinger equations: application to Bose–Einstein condensates. J. Phys. A Math. Gen. 39, 7705 (2006)

    Article  MATH  Google Scholar 

  18. Zabolotskii, A.A.: Inverse scattering transform for the Yajima–Oikawa equations with nonvanishing boundary conditions. Phys. Rev. A 80, 063616 (2009)

    Article  Google Scholar 

  19. Oikawa, M., Okamura, M., Funakoshi, M.: Two-dimensional resonant interaction between long and short waves. J. Phys. Soc. Jpn. 58, 4416–4430 (1989)

    Article  Google Scholar 

  20. Ohta, Y., Maruno, K.I., Oikawa, M.: Two-component analogue of two-dimensional long wave-short wave resonance interaction equations: a derivation and solutions. J. Phys. A Math. Theor. 40, 7659 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Radha, R., Kumar, C.S., Lakshmanan, M., Tang, X.Y., Lou, S.Y.: Periodic and localized solutions of the long wave-short wave resonance interaction equation. J. Phys. A Math. Gen. 38, 9649 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Radha, R., Kumar, C.S., Lakshmanan, M., Gilson, C.R.: The collision of multimode dromions and a firewall in the two-component long-wave-short-wave resonance interaction equation. J. Phys. A Math. Theor. 42, 102002 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kanna, T., Vijayajayanthi, M., Sakkaravarthi, K., Lakshmanan, M.: Higher dimensional bright solitons and their collisions in a multicomponent long wave-short wave system. J. Phys. A Math. Theor. 42, 115103 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Sakkaravarthi, K., Kanna, T.: Dynamics of bright soliton bound states in (2 + 1)-dimensional multicomponent long wave-short wave system. Eur. Phys. J. Spec. Top. 222, 641–653 (2013)

    Article  Google Scholar 

  25. Kanna, T., Vijayajayanthi, M., Lakshmanan, M.: Mixed solitons in a (2 + 1)-dimensional multicomponent long-wave-short-wave system. Phys. Rev. E 90, 042901 (2014)

    Article  Google Scholar 

  26. Kanna, T., Sakkaravarthi, K., Tamilselvan, K.: General multicomponent Yajima–Oikawa system: Painlevé analysis, soliton solutions, and energy-sharing collisions. Phys. Rev. E 88, 062921 (2013)

    Article  Google Scholar 

  27. Sakkaravarthi, K., Kanna, T., Vijayajayanthi, M., Lakshmanan, M.: Multicomponent long-wave-short-wave resonance interaction system: bright solitons, energy-sharing collisions, and resonant solitons. Phys. Rev. E 90, 052912 (2014)

    Article  MATH  Google Scholar 

  28. Jimbo, M., Miwa, T.: Solitons and infinite dimensional Lie algebras. Publ. Res. Inst. Math. Sci. 19, 943–1001 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  29. Zhang, Y.J., Cheng, Y.: Solutions for the vector k-constrained KP hierarchy. J. Math. Phys. 35, 5869–5884 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  30. Sidorenko, J., Strampp, W.: Multicomponent integrable reductions in the Kadomtsev–Petviashvilli hierarchy. J. Math. Phys. 34, 1429–1446 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  31. Liu, Q.P.: Bi-Hamiltonian structures of the coupled AKNS hierarchy and the coupled Yajima–Oikawa hierarchy. J. Math. Phys. 37, 2307–2314 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  32. Ohta, Y., Wang, D.S., Yang, J.K.: General \(N\)-dark-dark dolitons in the coupled nonlinear Schrödinger equations. Stud. Appl. Math. 127, 345–371 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  33. Feng, B.F.: General \(N\)-soliton solution to a vector nonlinear Schrödinger equation. J. Phys. A Math. Theor. 47, 355203 (2014)

    Article  MATH  Google Scholar 

  34. Chen, J.C., Chen, Y., Feng, B.F., Maruno, K.I.: Multi-dark soliton solutions of the two-dimensional multi-component Yajima–Oikawa systems. J. Phys. Soc. Jpn. 84, 034002 (2015)

    Article  Google Scholar 

  35. Chen, J.C., Chen, Y., Feng, B.F., Maruno, K.I.: General mixed multi-soliton solutions to one-dimensional multicomponent Yajima–Oikawa system. J. Phys. Soc. Jpn. 84, 074001 (2015)

    Article  Google Scholar 

  36. Chen, J.C., Chen, Y., Feng, B.F., Maruno, K.I.: Rational solutions to two-and one-dimensional multicomponent Yajima–Oikawa systems. Phys. Lett. A. 379, 1510–1519 (2015)

    Article  MathSciNet  Google Scholar 

  37. Chen, J.C., Chen, Y., Feng, B.F., Maruno, K.I., Ohta, Y.: An integrable semi-discretization of the coupled Yajima–Oikawa system. J. Phys. A Math. Theor. 49, 165201 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  38. Chan, H.N., Ding, E., Kedziora, D.J., Grimshaw, R., Chow, K.W.: Rogue waves for a long waveCshort wave resonance model with multiple short waves. Nonlinear Dyn. 84, 1–15 (2016)

  39. Lai, D.W.C., Chow, K.W.: Positon and dromion solutions of the (2 + 1)-dimensional long wave-short wave resonance interaction equations. J. Phys. Soc. Jpn. 68, 1847–1853 (1999)

Download references

Acknowledgements

The work is supported by the Global Change Research Program of China (No. 2015CB953904), National Natural Science Foundation of China (Grant Nos. 11275072, 11435005 and 11428102), Research Fund for the Doctoral Program of Higher Education of China (No. 20120076110024), the Network Information Physics Calculation of basic research innovation research group of China (Grant No. 61321064), Shanghai Collaborative Innovation Center of Trustworthy Software for Internet of Things (Grant No. ZF1213), Shanghai Minhang District talents of high level scientific research project and Zhejiang Province Natural Science Foundation of China (Grant No. LY14A010005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junchao Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Feng, BF., Chen, Y. et al. General bright–dark soliton solution to (2 + 1)-dimensional multi-component long-wave–short-wave resonance interaction system. Nonlinear Dyn 88, 1273–1288 (2017). https://doi.org/10.1007/s11071-016-3309-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-3309-9

Keywords

Navigation