Skip to main content
Log in

On the periodic gait stability of a multi-actuated spring-mass hopper model via partial feedback linearization

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Spring-loaded inverted pendulum (SLIP) template (and its various derivatives) could be considered as the mostly used and widely accepted models for describing legged locomotion. Despite their simple nature, as being a simple spring-mass model in dynamics perspective, the SLIP model and its derivatives are formulated as restricted three-body problem, whose non-integrability has been proved long before. Thus, researchers proceed with approximate analytical solutions or use partial feedback linearization when numerical integration is not preferred in their analysis. The key contributions of this paper can be divided into two parts. First, we propose a dissipative SLIP model, which we call as multi-actuated dissipative SLIP (MD-SLIP), with two extended actuators: one linear actuator attached serially to the leg spring and one rotary actuator attached to hip. The second contribution of this paper is a partial feedback linearization strategy by which we can cancel some nonlinear dynamics of the proposed model and obtain exact analytical solution for the equations of motion. This allows us to investigate stability characteristics of the hopping gait obtained from the MD-SLIP model. We illustrate the applicability of our solutions with open-loop and closed-loop hopping performances on rough terrain simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Raibert, M.H.: Legged Robots that Balance. MIT Press, Cambridge (1986)

    MATH  Google Scholar 

  2. Holmes, P., Full, R.J., Koditschek, D., Guckenheimer, J.: The dynamics of legged locomotion: models, analyses, and challenges. SIAM Rev. 48(2), 207–304 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Saranli, U., Buehler, M., Koditschek, D.E.: RHex: A simple and highly mobile robot. Int. J. Robot. Res. 20(7), 616–631 (2001)

  4. Dickinson, M.H., Farley, C.T., Full, R.J., Koehl, M.A.R., Kram, R., Lehman, S.: How animals move: an integrative view. Science 288(5463), 100–106 (2000)

    Article  Google Scholar 

  5. Fang, H., Li, S., Wang, K., Xu, J.: Phase coordination and phase-velocity relationship in metameric robot locomotion. Bioinspi. Biomim. 10(6), 066006 (2015)

    Article  Google Scholar 

  6. Wooden, D., Malchano, M., Blankespoor, K., Howardy, A., Rizzi, A.A., Raibert, M.: Autonomous navigation for BigDog. In: Proceedings of the 2010 IEEE International Conference on Robotics and Automation (ICRA), pp. 4736–4741 (2010)

  7. Dubey, S., Prateek, M., Saxena, M.: Robot locomotion—a review. Int. J. Appl. Eng. Res. 10(3), 7357–7369 (2015)

    Google Scholar 

  8. Kajita, S., Espiau, B.: Legged Robots. In: Siciliano, B., Khatib, O. (eds.) Springer Handbook of Robotics, pp. 361–389. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  9. Saranlı, U., Arslan, Ö., Ankaralı, M.M., Morgül, Ö.: Approximate analytic solutions to non-symmetric stance trajectories of the passive spring-loaded inverted pendulum with damping. Nonlinear Dyn. 62(4), 729–742 (2010)

    Article  Google Scholar 

  10. Fang, H., Li, S., Wang, K.W., Xu, J.: A comprehensive study on the locomotion characteristics of a metameric earthworm-like robot; part a: modeling and gait generation. Multibody Syst. Dyn. 34(4), 391–413 (2015)

    Article  MathSciNet  Google Scholar 

  11. Uyanik, I., Ankarali, M.M., Cowan, N.J., Saranli, U., Morgül, Ö.: Identification of a vertical hopping robot model via harmonic transfer functions. Trans. Inst. Meas. Control 38(5), 501–511 (2016)

    Article  Google Scholar 

  12. Pinto, C.M.: Stability of quadruped robots trajectories subjected to discrete perturbations. Nonlinear Dyn. 70(3), 2089–2094 (2012)

    Article  MathSciNet  Google Scholar 

  13. Golubitsky, M., Stewart, I., Buono, P.L., Collins, J.: Symmetry in locomotor central pattern generators and animal gaits. Nature 401(6754), 693–695 (1999)

    Article  Google Scholar 

  14. Collins, J.J., Stewart, I.N.: Coupled nonlinear oscillators and the symmetries of animal gaits. J. Nonlinear Sci. 3(1), 349–392 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  15. Andrews, B., Miller, B., Schmitt, J., Clark, J.E.: Running over unknown rough terrain with a one-legged planar robot. Bioinspir. Biomim. 6(2), 026009 (2011)

    Article  Google Scholar 

  16. Blickhan, R., Full, R.J.: Similarity in multilegged locomotion: bouncing like a monopode. J. Comp. Physiol. A: Neuroethol., Sen., Neural, Behav. Physiol. 173(5), 509–517 (1993)

    Article  Google Scholar 

  17. Farley, C.T., Ferris, D.P.: Biomecahnics of walking and running: center of mass movements to muscle action. Excercise Sport Sci. Rev. 26, 253–283 (1998)

    Google Scholar 

  18. Zeglin, G.: The bow leg hopping robot. Ph.D. thesis, Carnegie Mellon University, Pittsburgh, PA, USA (1999)

  19. Hurst, J.W., Chestnutt, J.E., Rizzi, A.A.: Design and philosophy of the BiMASC, a highly dynamic biped. In: Proceedings of the 2007 IEEE International Conference on Robotics and Automation, pp. 1863–1868 (2007)

  20. Ankarali, M.M., Saranli, U.: Stride-to-stride energy regulation for robust self-stability of a torque-actuated dissipative spring-mass hopper. Chaos: an Interdisciplinary. J. Nonlinear Sci. 20(3), 033121 (2010)

    MATH  Google Scholar 

  21. Full, R.J., Koditschek, D.E.: Templates and anchors: neuromechanical hypotheses of legged locomotion on land. J. Exp. Biol. 202(23), 3325–3332 (1999)

    Google Scholar 

  22. Han, B., Luo, X., Liu, Q., Zhou, B., Chen, X.: Hybrid control for SLIP-based robots running on unknown rough terrain. Robotica 32(7), 1065–1080 (2014)

    Article  Google Scholar 

  23. Schwind, W.J., Koditschek, D.E.: Approximating the stance map of a 2-DOF monoped runner. J. Nonlinear Sci. 10(5), 533–568 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  24. Holmes, P.: Poincaré, celestial mechanics, dynamical-systems theory and chaos. Phys. Rep. 193(3), 137–163 (1990)

    Article  MathSciNet  Google Scholar 

  25. Arslan, Ö., Saranli, U.: Reactive planning and control of planar spring-mass running on rough terrain. IEEE Trans. Robot. 28(3), 567–579 (2012)

    Article  Google Scholar 

  26. Uyanik, I., Saranli, U., Morgül, Ö.: Adaptive control of a spring-mass hopper. In: Proceedings of the 2011 IEEE International Conference on Robotics and Automation (ICRA), pp. 2138–2143 (2011)

  27. Geyer, H., Seyfarth, A., Blickhan, R.: Spring-mass running: simple approximate solution and application to gait stability. J. Theor. Biol. 232(3), 315–328 (2005)

    Article  MathSciNet  Google Scholar 

  28. Uyanik, I., Morgül, Ö., Saranli, U.: Experimental validation of a feed-forward predictor for the spring-loaded inverted pendulum template. IEEE Trans. Robot. 31(1), 208–216 (2015)

    Article  Google Scholar 

  29. Piovan, G., Byl, K.: Enforced symmetry of the stance phase for the spring-loaded inverted pendulum. In: Proceedings of the 2012 IEEE International Conference on Robotics and Automation (ICRA), pp. 1908–1914 (2012)

  30. Altendorfer, R., Saranli, U., Komsuoglu, H., Koditschek, D., Brown, H.B., Buehler, M., Moore, N., McMordie, D., Full, R.: Evidence for spring loaded inverted pendulum running in a hexapod robot. In: Rus, D., Singh, S. (eds.) Experimental Robotics VII, pp. 291–302. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  31. Sato, A., Buehler, M.: A planar hopping robot with one actuator: design, simulation, and experimental results. In: Proceesings of the 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3540–3545 (2004)

  32. Poulakakis, I., Grizzle, J.W.: The spring loaded inverted pendulum as the hybrid zero dynamics of an asymmetric hopper. IEEE Trans. Autom. Control 54(8), 1779–1793 (2009)

    Article  MathSciNet  Google Scholar 

  33. Secer, G., Saranli, U.: Control of hopping through active virtual tuning of leg damping for serially actuated legged robots. In: Proceedings of the 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 4556–4561 (2014)

  34. Schmitt, J., Clark, J.: Modeling posture-dependent leg actuation in sagittal plane locomotion. Bioinspir. Biomim. 4(4), 046005 (2009)

    Article  Google Scholar 

  35. Peuker, F., Seyfarth, A., Grimmer, S.: Inheritance of SLIP running stability to a single-legged and bipedal model with leg mass and damping. In: Proceedings of the 2012 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), pp. 395–400 (2012)

  36. Uyanik, I.: Adaptive control of a one-legged hopping robot through dynamically embedded spring-loaded inverted pendulum template. M.Sc. thesis, Bilkent University, Ankara, Turkey (2011)

  37. Hamzaçebi, H., Morgül, Ö.: Enlarging the region of stability using the torque-enhanced active SLIP model. In: Proceedings of the 2015 IEEE International Conference on Advanced Robotics (ICAR), pp. 345–350 (2015)

  38. Khalil, H.K.: Nonlinear Systems, 3rd edn. Prentice Hall, Upper Saddle River (2002)

    MATH  Google Scholar 

  39. Miller, B., Schmitt, J., Clark, J.E.: Quantifying disturbance rejection of SLIP-like running systems. Int. J. Robot. Res. 31(5), 573–587 (2012)

    Article  Google Scholar 

  40. Welch, P.D.: The use of fast fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Trans. Audio Electroacoust. 15(2), 70–73 (1967)

    Article  Google Scholar 

Download references

Acknowledgements

Hasan Hamzaçebi was supported by Aselsan Inc. and The Scientific and Technological Research Council of Turkey (TÜBİTAK). The authors would like to thank İsmail Uyanık for his invaluable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hasan Hamzaçebi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamzaçebi, H., Morgül, Ö. On the periodic gait stability of a multi-actuated spring-mass hopper model via partial feedback linearization. Nonlinear Dyn 88, 1237–1256 (2017). https://doi.org/10.1007/s11071-016-3307-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-3307-y

Keywords

Mathematics Subject Classification

Navigation